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Zusammenfassung

Diese Arbeit beschäftigt sich mit der Untersuchung und Anwendung alternativer

Beschreibungsmöglichkeiten für maximal supersymmetrische Feldtheorien in vier Di-

mensionen: N=4 Super-Yang-Mills-Theorie und N=8 Supergravitation.

Während die Twistorstringtheorie Baumgraphen in der N=4 Super-Yang-Mills-

Theorie beschreiben kann, ist für die N=8 Supergravitation keine derartige Formu-

lierung bekannt. Zwar enthält die Twistorstringtheorie neben dem N=4 Super-Yang-

Mills(SYM)-Teil noch weitere Vertexoperatoren, doch beschreiben diese die Zustände

in einer N=4 konformen Supergravitation und müssen modifiziert werden, um für die

Beschreibung einer Einsteinschen Supergravitation geeignet zu sein. Eine veränderte

Version der Twistorstringtheorie, in der die konforme Symmetrie für die gravitativen

Vertexoperatoren gebrochen wird, ist kürzlich vorgeschlagen worden. Der erste Teil

der Dissertation diskutiert strukturelle Aspekte und die Konsistenz der modifizierten

Theorie. Dabei zeigt sich, dass der Großteil der Amplituden nicht konsistent konstruiert

werden kann. Dies wird darauf zurückgeführt, dass die Modifikation der Theorie die

Dimension des Modulraumes der algebraischen Kurven im Twistorraum auf unzulässige

Weise reduziert.

Die Frage einer möglichen Endlichkeit der N=8 Supergravitation ist eng mit der

Existenz gültiger Counterterme in der Störungsentwicklung der Theorie verknüpft.

Der zum sogenannten R4-Counterterm gehörende Vorfaktor ist kürzlich in einer ex-

pliziten Rechnung zu null bestimmt worden. Dieses Verhalten weist darauf hin, dass

die verwendete Formulierung eine Symmetrie der Theorie nicht berücksichtigt. Eine der

möglicherweise vernachlässigten Symmetrien ist die versteckte E7(7)-Symmetrie. Für

das Auftreten dieser Symmetrie in einer Theorie ist die Gültigkeit der doppelt-weichen

skalaren Limes-Relation notwendig. Im zweiten Teil der Dissertation werden mit Hilfe

der Stringtheorie die Amplituden für eine durch Hinzufügen eines R4-Counterterms

veränderte Supergravitationswirkung berechnet, um die Gültigkeit zu überprüfen. Es

wird gezeigt, dass aus dem doppelt-weichen Limes keine E7(7)-Einschränkungen an den

R4-Counterterm hergeleitet werden können. Entgegen der Erwartung für eine E7(7)-

symmetrische Theorie verschwindet der einfach-weiche skalare Limes der Amplituden

jedoch nicht. Dies legt nahe, dass die E7(7)-Symmetrie durch den R4-Counterterm

gebrochen wird.

Der dritte Teil der Dissertation beschäftigt sich mit der Grassmannschen Formu-

lierung der N=4 SYM-Theorie. Jede Amplitude in der N=4 SYM-Theorie kann

als Linearkombination bestimmter infrarot(IR)-divergenter Integrale ausgedrückt wer-

den. Die Koeffizienten dieser Integrale, die führenden Singularitäten, bestimmen die

Struktur der Amplituden vollständig. Aus Feldtheorierechnungen ist bekannt, dass die

führenden Singularitäten nicht voneinander unabhängig, sondern durch die sogenann-

ten IR-Gleichungen verknüpft sind. Weiterhin vermutet man, dass die führenden Sin-

gularitäten sich als Linearkombinationen von Residuen eines mehrdimensionalen kom-

plexen Integrals in der alternativen Grassmannschen Formulierung darstellen lassen.

Diese Residuen sind ebenfalls nicht unabhängig, sondern durch verallgemeinerte Formen

des Cauchyschen Satzes, die verallgemeinerte Residuentheoreme, miteinander verknüpft.

Beispiele weisen darauf hin, dass die IR-Gleichungen in der Sprache der Residuen aus

den verallgemeinerten Residuentheoremen folgen. Es wird gezeigt, dass die verallge-



meinerten Residuentheoreme in der Grassmannschen Formulierung nicht nur mit den

IR-Gleichungen korrespondieren, sondern mit einem größeren Satz von Bedingungen,

der aus Betrachtungen zur dualen konformen Anomalie von Ein-Schleifen-Amplituden

hergeleitet werden kann. Eine explizite Form der Abbildung sowohl zwischen den dualen

konformen Bedingungen als auch den IR-Gleichungen wird hergeleitet und diskutiert.



Abstract

The central objective of this work is the exploration and application of alternative

possibilities to describe maximally supersymmetric field theories in four dimensions:

N=4 super Yang-Mills theory and N=8 supergravity.

While twistor string theory has been proven very useful in the context of N=4

SYM, no analogous formulation for N=8 supergravity is available. In addition to the

part describing N=4 SYM theory, twistor string theory contains vertex operators cor-

responding to the states of N=4 conformal supergravity. Those vertex operators have

to be altered in order to describe (non-conformal) Einstein supergravity. A modified

version of the known open twistor string theory, including a term which breaks the

conformal symmetry for the gravitational vertex operators, has been proposed recently.

In a first part of the thesis structural aspects and consistency of the modified theory are

discussed. Unfortunately, the majority of amplitudes can not be constructed, which can

be traced back to the fact that the dimension of the moduli space of algebraic curves

in twistor space is reduced in an inconsistent manner.

The issue of a possible finiteness of N=8 supergravity is closely related to the

question of the existence of valid counterterms in the perturbation expansion of the

theory. In particular, the coefficient in front of the so-called R4 counterterm candidate

has been shown to vanish by explicit calculation. This behavior points into the direction

of a symmetry not taken into account, for which the hidden on-shell E7(7) symmetry is

the prime candidate. The validity of the so-called double-soft scalar limit relation is a

necessary condition for a theory exhibiting E7(7) symmetry. By calculating the double-

soft scalar limit for amplitudes derived from an N=8 supergravity action modified by an

additional R4 counterterm, one can test for possible constraints originating in the E7(7)

symmetry. In a second part of the thesis, the appropriate amplitudes are calculated

employing the low-energy limit of string theory, and the double-soft limit relation is

indeed shown to hold. However, if the modified action has E7(7) symmetry, the single-

soft scalar limit of any amplitude should vanish. This not being the case suggests that

the E7(7) symmetry is broken by the R4 counterterm.

Finally, the Grassmannian formulation of N=4 SYM is investigated in a third part

of the thesis. Any amplitude in N=4 SYM theory can be expressed as a linear combi-

nation of certain infrared (IR) divergent integrals. Being known as leading singularities,

the coefficients of these integrals completely determine the structure of an amplitude.

From field-theory calculations it is known that the leading singularities are not inde-

pendent, but are subject to a set of so-called IR equations. The alternative Grassman-

nian formulation is conjectured to describe the leading singularities as certain linear

combinations of residues of a multidimensional complex integral. These residues are

not independent but are related by generalized residue theorems (GRTs), which are

multidimensional generalizations of Cauchy’s theorem. Indeed, expressing the leading

singularities known from field-theory calculations in terms of these residues supports

the conjecture that the IR equations can be derived from GRTs. Here it is shown

that GRTs in the Grassmannian formulation do not only give rise to IR equations,

but to a larger set of constraints, which can be derived by considering the dual con-

formal anomaly of one-loop amplitudes. Explicit maps between GRTs and both, dual

conformal constraints and IR equations, are deduced and discussed.
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1 Introduction

Whenever today’s particle physicists make predictions for scattering experiments, they use

the standard model of particle physics, which in turn is based on special relativity. The

standard model is a quantum theoretical framework, which incorporates three of the four

known fundamental forces, the electromagnetic, weak and strong force. In contrast, general

relativity describes the fourth force, gravitation, completely classically.

Both approaches, the standard model and general relativity, are very successful. All

predictions drawn from those theories are in concordance with any experiment performed

so far. While it would already be very natural to treat all four forces in a unified framework

from an aesthetic point of view, there is also a physical necessity to search for a quantum

theory of gravity. Classical general relativity fails to describe gravity at very high energy

densities, which occur shortly after the big bang or at very small distances.

Since the standard model of particle physics is formulated in the language of quantum

field theory, a quantum field theory of gravity would be desirable. Unfortunately, gravitation

resists any näıve attempt to be incorporated into this framework. The quantum field theory

analogue of Einstein’s general relativity features an infinite number of divergences, which

would have to be removed by an infinite number of renormalization parameters. A quantum

field theory exhibiting this behavior does not lead to physically sensible predictions and is

called unrenormalizable.

The probably most advanced concept incorporating gravity in a quantum-theoretical

framework arose in the seventies: string theory. While already showing beautiful signatures

of a unified theory, string theories come with a number of technical drawbacks, the most

famous one being the requirement of living in more than four spacetime dimensions. Al-

though this can be cured by a process called compactification, a distinguished string theory

framework which reproduces the standard model and general relativity is still lacking.

However, there is a class of theories which are related to both, the unified string theory

framework and usual field theories: maximally supersymmetrically extended field theories.

In four dimensions they are called N=4 super Yang-Mills theory for particles up to spin

one, while the gravitational version for particles up to spin two is referred to as N=8

supergravity. Arising as supersymmetrized versions of usual Yang-Mills theory and general

relativity respectively, these theories can on the other hand be shown to agree with the

low-energy limit of certain string theories.

While N=4 super Yang-Mills theory is a consistent quantum field theory, the status of

N=8 supergravity is questionable: it is suspected to be incomplete as a quantum theory due

to being non-renormalizable by power-counting. Although power-counting arguments de-

liver rather reliable hints for other quantum field theories, they do not seem to be sufficient

in this context. Explicit calculations for certain amplitudes show seemingly unrelated diver-

gences to cancel miraculously, which points into the direction of a renormalizable (or even

finite) theory. Proving finiteness of N=8 supergravity would render it the first consistent

quantum field theory of gravity.
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The nature of the two maximally supersymmetric theories is quite different:

• N=4 super Yang-Mills (SYM) theory in four dimensions is one of the best explored

interacting quantum field theories. Known since the late seventies, it has been proven

to be a consistent quantum field theory free of problematic divergences. Witten’s

twistor string theory description triggered the discovery of a variety of new features

during recent years. In particular, a connection of the usual and a new dual super-

conformal symmetries have been found to jointly represent the Yangian symmetry of

N=4 SYM. A novel description, the Grassmannian formulation, makes these sym-

metries manifest and was proposed in 2009. Very recently it has been shown that

the Grassmannian formulation is implied by Yangian symmetry and closely related

to other descriptions, e.g. the link representation and Hodges twistor diagrams. In

addition to explaining the stunning simplicity of amplitudes, the Grassmannian mech-

anism supports the conjecture that all amplitudes in the whole theory are completely

determined by their correct analytical behavior and symmetries.

• Although found only shortly after N=4 SYM theory, N=8 supergravity is less well

explored due to its algebraic complexity. Calculations in the current spacetime for-

mulation are cumbersome, but the results turn out to be very simple. This usually

hints at a symmetry of the theory not being accounted for in the formalism employed.

While the famous hidden E7 symmetry of N=8 supergravity is one of the candidate

symmetries which could help to explain the astonishing simplicity of amplitudes, it

has also been discussed recently, whether perhaps even this symmetry group needs to

be extended to account for all symmetries.

Both observations, the simplicity of the amplitudes and the miraculous cancellations

mentioned above, are neither visible nor transparent in the current local spacetime

formulation of N=8 supergravity. Parallel to the situation in N=4 SYM theory, it is

suggestive to assume that amplitudes of the theory are fixed by their analytic behavior

and symmetry to a large extent.

In this thesis, alternative approaches to both N=4 SYM and N=8 supergravity shall

be investigated and employed. This will be done in three projects listed below.

• While twistor string theory has been proven very useful in the context of N=4 SYM,

no analogous formulation for N=8 supergravity is available. However, twistor string

theory is known to contain states corresponding to the particle content of linearized

conformal supergravity. A modification for the twistor string theory which breaks the

conformal invariance has been suggested and the resulting theory has been proposed

to describe N=8 supergravity. While this description seems to reproduce one par-

ticular amplitude in N=8 supergravity, further calculations had not been performed

initially. Motivated by the inconsistency of higher-point amplitude calculations, the

structure of the modified theory is investigated. The problem can be traced back

to overconstraining the moduli space of the algebraic curves in twistor space, which
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support the spacetime amplitudes. Furthermore, the constraints are shown to lead to

trivial multiplets, which render the theory physically meaningless.

Nevertheless, one particular amplitude in conformal supergravity can be shown to

consistently result in the known expression from N=8 supergravity without the mod-

ification breaking conformal invariance. This raises the question for other amplitudes

to be accessible in the framework of twistor string theory.

• The question of finiteness of N=8 supergravity is closely related to the existence of

suitable counterterms in the perturbative expansion of the theory. One example for

the miraculous cancellations mentioned above is the vanishing of the coefficient for an

R4 counterterm in N=8 supergravity. Although shown by explicit calculations, the

reason for the cancellations has not yet been understood. Since the R4 term respects

N=8 supersymmetry, this result poses the question of whether another symmetry

could be responsible for the miraculous cancellations of the three-loop divergences.

In the second project of this thesis, possible restrictions arising from the non-compact

part of E7(7) symmetry are discussed. This symmetry can be accessed by investigating

scattering amplitudes involving scalars. If the momentum of a scalar goes to zero, it

is referred to as a soft scalar. It is this process of almost vanishing momenta, which

gives access to the coset symmetry. In particular, a double-soft scalar limit relation

derived recently has to be satisfied in order for the theory to be compatible with E7(7)

symmetry. Calculations involving matrix elements derived from an action with an R4

counterterm are difficult to perform. In order to circumvent these problems, one can

make use of the fact that the R4 term occurs as leading correction in the low-energy

expansion of closed-string tree-level amplitudes. Although the considered matrix ele-

ments obey the double-soft scalar relation, they do not show the correct behavior in

the single-soft limit. The expected vanishing by the action of E7(7) symmetry does

not occur, thus questioning the E7(7) compatibility of the R4 counterterm.

• Various intricate relations between amplitudes have been derived in N=4 SYM the-

ory. In particular, coefficients in the box expansion of one-loop amplitudes are known

to satisfy certain infrared consistency conditions, which can be derived from demand-

ing cancellations of infrared divergences in dimensionally regularized box integrals.

Recently, infrared (IR) equations have been shown to be implied by the even larger

set of dual conformal constraints, which originate in the necessity of cancellations

of anomalies of the dual superconformal symmetry. The infrared structure of N=4

SYM amplitudes has been conjectured to be geometrically represented by a general-

ization of Cauchy’s theorem in the Grassmannian formulation of N=4 SYM theory.

Restricting the attention to next-to-maximally helicity-violating amplitudes, certain

examples have been considered for one-loop IR equations and shown to indeed corre-

spond to particular combinations of generalized Cauchy theorems in a Grassmannian

geometry. In this third project, the precise mapping of not only one-loop IR equations

but also dual superconformal constraints onto a certain class of generalized residue
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theorems is found and discussed. Although the investigated structure is speculated

to contain information about the two- and higher loop infrared behavior of N=4 su-

per Yang-Mills theory in the NMHV sector, the lack of an integral basis at two and

higher loops as well as the missing higher-loop field-theory calculations prevent the

establishment of a map beyond one-loop level.

After discussing basic concepts of supersymmetric field theories in the introductory

section 2, several alternatives to the usual spacetime description of these theories are intro-

duced in section 3. Section 4 is devoted to the investigation of the possible twistor-string

description of N=8 supergravity, followed by the study of the constraints from the hidden

E7 symmetry on the appearance of a possible R4 counterterm in N=8 supergravity in

section 5. In section 6 the connection between one-loop infrared equations in N=4 super-

Yang-Mills theory and generalized residue theorems in its Grassmannian formulation are

explored. Finally, the thesis is concluded in section 7.
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2 Supersymmetric field theories

Starting with fields, symmetries and the S-matrix, this introductory section shall disscuss

the necessary building blocks for maximal supersymmetric field theories and set the con-

ventions used below. After the spinor helicity formalism is described in subsection 2.2,

Lie algebras are explained and extended with supersymmetry in order to be applied to

supersymmetric Ward identities lateron. Finally, basic properties of the two maximally

supersymmetric field theories in four dimensions, N=4 super Yang-Mills theory and N=8

supergravity, are discussed in subsections 2.6 and 2.7 respectively.

2.1 Field theories

2.1.1 Fields and symmetries

Let xµ with µ ∈ {0, . . . , d − 1} be local coordinates parameterizing a real manifold Rd.

A physical theory is defined to be a collection of local fields Φ = {Φ1(x
µ), . . . ,Φn(xµ)}

whose dynamics, the explicit dependence on the coordinates, is governed by the equations

of motion. For all theories considered in this thesis, the equations of motion can be derived

by the variational principle from an action functional S[Φ].

In the language of differential geometry fields are defined to be sections of tensor bundles

over the manifold Rd. In particular, a scalar field is a map from the manifold to the real

numbers

ϕ : Rd → R (2.1)

while a vector or tensor field are mappings to the tangent or cotangent spaces:

Aµ : Rd → T ∗Rd

gµν : Rd → T ∗Rd ⊗ T ∗Rd. (2.2)

Symmetries of a theory map one set of classical field configurations Φ to another set Φ′,

which is again a solution to the equations of motion. There are two types of symmetries

of an action functional S: external or spacetime symmetries act on the fields Φ and

can be compensated by choosing a different set of local coordinates xµ. On the contrary,

internal symmetries act on the fibers of the tensor bundle and not on the manifold

directly.

A symmetry is called global , if the same transformation is applied for all points xµ ∈ Md

and local , if the symmetry is parameterized by xµ. The process of converting a global

symmetry into a local one is referred to as gauging .

Considering the space of all possible symmetry transformations

κ : Φ → Φ′ = κ[Φ] (2.3)

it should have an associative product structure with unit element (the trivial transforma-

tion) and inverse element (the backward transformation). One important example, which
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in addition requires the symmetry to be continuous, are the Lie groups discussed in sub-

section 2.3.

An object X, which a symmetry transformation can act on is called

• invariant under a symmetry action κ if

κ[X] = X (2.4)

• covariant under a symmetry action κ, if the induced action on X is (multi)linear.

A physical theory is called invariant under a symmetry transformation, if its equation

of motion are covariant. This is equivalent to invariance of the action S[Φ] up to total

derivatives in the lagrangian and a constant rescaling.

Not all symmetries need to be manifest in the action S of a theory. For example it is not

always possible to find representations for the fields which satisfy all symmetry relations

explicitly. In particular for theories with a very rich symmetry structure there are several

formulations, which make different symmetries manifest. If a symmetry transformations

leaves the action invariant only after employing the equations of motion, this symmetry is

called on-shell or hidden symmetry. Analogously, the symmetries which do not require

the equations of motion to leave the action invariant are referred to as off-shell.

2.1.2 Amplitudes and S-matrix

In order to relate a physical theory to experiments, one can calculate amplitudes from the

collection of fields and the equations of motion originating in the action S. An amplitude is

a functional depending on the external momenta and the type of the particles, which take

part in the scattering process:

A(1in, 2in, . . . , nin, 1out, . . . ,mout) → C . (2.5)

The square of the absolute value of a particular amplitude is proportional to the probability

for the corresponding scattering process to take place. Labelling the different scattering

processes by their ingoing and outgoing particles, one can organize those probabilities in a

S-matrix S. Its elements, Sout|in, contain just the momentum dependent part of eq. (2.5)

accompanied by a momentum conserving δ-function [1].

In the arguments of amplitude expressions below, no distinction will be made between

ingoing and outgoing particles. Instead, outgoing particles are treated as ingoing but with

their momenta reversed.

Amplitudes can be determined from the action S[Φ] by the Feynman path integral

approach [2]. The resulting perturbative expansion can be graphically represented in terms

of Feynman diagrams, in which the order in perturbation theory corresponds to the number

of closed loops. A general four-particle amplitude can be depicted in the following way:

A = Atree + A1loop + A2loop + higher loops · · · . (2.6)
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The leading contributions are called tree amplitudes while higher amplitudes are referred

to by their number of loops.

Amplitudes can be considered for special kinematical configurations, which are called

soft and collinear limit. The soft limit refers to the situation in which the four-momentum

of one particle taking part in the scattering process goes to zero. In this case, one can show

for the highly symmetric theories discussed below that the amplitude factorizes [3, 4]

A(1, . . . , n)
pn→0
= fsoft · A(1, . . . , n− 1) , (2.7)

where fsoft is the soft factor. Similarly, if the momenta of two participating particles a and

b become collinear

pcoll = pa + pb, pa → zpcoll, pb → (1 − z)pcoll, z ∈ [0, 1] (2.8)

one finds

An(. . . , a, b, . . .)
pa||pb
= fcoll · An−1(. . . , pcoll, . . .) , (2.9)

where fcoll is the splitting factor. The soft and collinear limit of amplitudes will be referred

to as analytic behavior below.

Whereas symmetries of a theory leave the action S[Φ] invariant up to a total derivative

and constant rescaling, the corresponding amplitudes are annihilated by acting with the

(appropriate form of) symmetry generators. In particular, for a theory invariant under a

symmetry with generator κ, the amplitudes satisfy

κA(1, . . . , n) = A(κ[1], 2, . . . , n) + A(1, κ[2], . . . , n) + · · · + A(1, . . . , κ[n]) = 0 . (2.10)

and thereby relate certain entries in the S-matrix, thus decreasing the number of indepen-

dent elements. One particularly important example in the context of maximally super-

symmetric field theories are the supersymmetric Ward identities discussed in subsection

2.5.

Symmetries of amplitudes have been the starting point for an approach called analytic

S-matrix at the end of the sixties [5]. Since those symmetries reduce the number of

independent elements in the S-matrix and furthermore certain entries are related by analytic

relations eqs. (2.7) and (2.9), the question was raised, whether the whole S-matrix could be

fixed by those constraints. Initially designed to yield an analytic S-matrix for the strong

interaction, this idea did not prove a useful concept in this context: it is a very hard task

to approach a realistic quantum field theory from this side. However, if it comes to theories

which are strongly constrained by symmetries, an analytic S-matrix seems accomplishable.

In particular for the N=4 super Yang-Mills theory discussed in subsection 2.6 below, it

is believed that symmetries and analytic properties are strong enough to finally determine

the precise form of any amplitude in this theory completely.

2.2 Spinor helicity formalism

Most of the explicit expressions for amplitudes in four dimensional maximally supersym-

metric field theories below will be presented in the spinor helicity formalism [6, 7, 8], which

is responsible for the extremely compact expressions.
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The universal cover of the Lorentz group SO(p, q) is the spin group Spin(p, q). For

different signatures in four dimensions the universal covers are

SO(4) → Spin(4) ∼= SU(2) × SU(2)

SO(1, 3) → Spin(1, 3) ∼= SL(2,C)

SO(2, 2) → Spin(2, 2) ∼= SL(2,R) × SL(2,R) . (2.11)

Focussing on four dimensional spacetime with Minkowski signature below, a spinor of the

Lorentz group SO(1, 3) transforms in a representation of the corresponding spin group

Spin(1, 3). Starting from the Clifford algebra cl(1, 3) of γ-matrices

γ0 =

(
1l 0

0 −1l

)
γν =

(
0 σi

−σi 0

)
, (2.12)

a representation of the algebra spin(1, 3) can be obtained via

Σµν = − i

4
[γµ, γν ] , (2.13)

where the matrices σν are the 2 × 2 Pauli matrices accompanied by the unit matrix

σ0 = 1l2 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
.

(2.14)

The four-dimensional Dirac representation obtained in this way is reducible and can be

split into two Weyl representations, which are distinguished by their positive or negative

eigenvalue of the chirality operator

γ5 = i γ0γ1γ2γ3 =

(
0 1l

1l 0

)
. (2.15)

Correspondingly, projection operators for the left-handed and right-handed Weyl represen-

tations read

R =
1l + γ5

2
, L =

1l − γ5

2
. (2.16)

Spinor indices for the two Weyl representations are A = 1, 2 and A′ = 1′, 2′, which are raised

and lowered with the two-dimensional antisymmetric tensors εAB and εA′B′ . Conventionally

εAB = εA′B′ = iσ2 with εABεBC = δA
C and analogously for the primed tensor. In spinor

language the Minkowski metric diag(+,−,−,−) can be expressed as

ds2 = ηµνdxµdxν = εABεA′B′dxAA′

dxBB′

. (2.17)

Depending on the number of dimensions [9], it is possible to either additionally or

alternatively impose a Majorana condition on the Dirac spinor χ, which demands it to

equal its charge conjugate

χc = χ . (2.18)
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In four dimensions,

χc = Cγ0χ
∗ , (2.19)

where C denotes the charge conjugation operator

C =

(
εAB 0

0 εA
′B′

)
=




0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0


 , (2.20)

satisfying

CγµC
−1 = −γT

µ and Cγ0(Cγ0)
∗ = 1l . (2.21)

Spinors can be either Majorana or Weyl but not both in four dimensions. While Majorana

spinors are used in the derivation [10] of the action eq. (2.71) of N=4 SYM theory below,

the remainder of this subsection will be concerned with Weyl spinors exclusively.

According to the above discussion, any Lorentz vector index ν can be decomposed into

spinor indices

p/AA′

= pνσAA′

ν , (2.22)

where for a general vector

p/AA′

= ρAρA′

+ σAσA′

(2.23)

with ρ and σ being commuting Weyl spinors. If the vector pν is real, ρA and σA′

are related

to ρA′

and σA by complex conjugation. If pν is a null-vector, the determinant of p/ vanishes

pν pν = det(p/AA′

) = 0 and therefore rank(p/AA′

) < 2 . (2.24)

Thus the matrix p/ can be decomposed into spinors πA and π̄A′

transforming in representa-

tions of SL(2,C) and a second copy SL(2,C) respectively

p/AA′ = πAπ̄A′ , (2.25)

where the two spinors are related by complex conjugation

πA = (π̄A′

)∗ . (2.26)

Correspondingly, for a momentum null-vector pν , the massless Dirac equation splits into

two pieces

p/AA′

µA(p) = 0 and p/AA′µ̄A′

(p) = 0. (2.27)

Noting that µAµA = 0 and µ̄A′µ̄A′

= 0 due to the antisymmetry of the spinor product,

solutions to eq. (2.27) have to be proportional to πA and πA′

πA ∼ µA and πA′ ∼ µA′

. (2.28)

A convenient normalized choice for the spinors µA and µ̄A′

satisfying eq. (2.27) is

µA(p) =

( √
p+

√
p−eiϕ

)
and µ̄A′

(p) =

( √
p+

√
p−e−iϕ

)
, (2.29)
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where

e±iϕ =
p1 ± ip2

√
(p1)2 + (p2)2

=
p1 ± ip2

√
p+p−

, p± = p0 ± p3 . (2.30)

The spinors µA and µ̄A′

are related to the positive and negative energy solutions u(p)

and v(p) of the massless Dirac equation in four dimensions, where the conventions from [1]

are used. Since the projection operators for positive and negative energy

Ppos(p) ∼ u(p) ⊗ u(p) and Pneg(p) ∼ v(p) ⊗ v(p) (2.31)

are both proportional to p/, the solutions of definite helicity

u+(p) = Ru(p), u−(p) = Lu(p), v+(p) = Lv(p) and v−(p) = Rv(p) (2.32)

and their conjugates can be chosen equally

u±(p) = v∓(p) and u±(p) = v∓(p) . (2.33)

Comparing eq. (2.32) with the definition of the Weyl representation above, one can iden-

tify the solutions to eq. (2.27) with the momentum spinors of the corresponding parti-

cles. Assuming the particles taking part in the scattering process to have null-momenta

pi, i = 1, . . . , n and using the notations

|i±〉 ≡ |p±i 〉 ≡ u±(pi) = v∓(pi), 〈i±| ≡ 〈p±i | ≡ u±(pi) = v∓(pi) ,

〈i| = 〈i−|, [i| = 〈i+|, |i〉 = |i+〉 and |j] = |j−〉, (2.34)

the basic spinor products are defined as

〈ij〉 ≡ 〈i−|j+〉 = u−(pi)u+(pj) = µA
i µjA, [ij] ≡ 〈i+|j−〉 = u+(pi)u−(pj) = µ̄iA′µ̄A′

j .

(2.35)

Furthermore, it will prove useful below to introduce spinor strings

〈i|m|j] = 〈i|(pm)ν |j] = 〈i|(p/m)AA′ |j] = µA
i µmA µ̄mA′ µ̄A′

j = 〈im〉[mj]
[i|m|j〉 = [i|(pm)ν |j〉 = [i|(p/m)AA′ |j〉 = µ̄iA′ µ̄A′

m µA
m µjA = [im]〈mj〉 . (2.36)

Spinor brackets are antisymmetric

〈ij〉 = −〈ji〉, [ij] = −[ji] and 〈ii〉 = [ii] = 0 , (2.37)

as required by the determinant in eq. (2.24) and satisfy the Schouten identities

〈ij〉 〈kl〉 = 〈ik〉 〈jl〉 + 〈il〉 〈kj〉 and [ij] [kl] = [ik] [jl] + [il] [kj] . (2.38)

Momentum conservation reads
n∑

i=1

〈ji〉[ik] = 0 (2.39)
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in spinor-helicity language. Spinor brackets can be related to the common Lorentz notation

employing the γ-matrices eq. (2.12). In particular,

〈ij〉[ji] = 〈i−|j+〉〈j+|i−〉 = tr
(

1
2(1 − γ5)p/ip/j

)
= 2pi · pj = sij , (2.40)

where kinematical invariants are defined via

[[i]]n = (pi + pi+1 + · · · + pi+n−1)
2 , sj = sj j+1 = [[j]]2 , tj = [[j]]3 . (2.41)

For the massless (p2
i = 0) theories considered here, kinematical invariants reduce to

s1 = [[1]]2 = s12 = 2p1 ·p2 and t2 = [[2]]3 = s23 +s24 +s34 = 2(p2 ·p3 +p2 ·p4 +p3 ·p4).

(2.42)

Fierz identities are given by

〈i+|γµ|j+〉〈k+|γµ|l+〉 = 2[ik]〈lj〉 (2.43)

where the Gordon identity and the projection operator take the following form:

〈i±|γµ|i±〉 = 2pµ
i , |i±〉〈i±| = 1

2 (1 ± γ5)p/i . (2.44)

Employing the identities above, one can show that

〈ij〉[jk]〈kl〉[li] =tr
(

1
2 (1 − γ5)p/ip/jp/kp/l

)

=
1

2
[sijskl − siksjl + silsjk − ε(i, j, k, l)] , (2.45)

where

ε(i, j, k, l) = 4iεµνρσp
µ
i p

ν
j p

ρ
kp

σ
l = [ij]〈jk〉[kl]〈li〉 − 〈ij〉[jk]〈kl〉[li] . (2.46)

For numerical calculations one would like to have expressions for the spinor brackets in

terms of the momenta p1, . . . , pn. With definitions eq. (2.29) above, solutions to the Dirac

equation can be chosen as [7]

u+(p) = v−(p) =
1√
2

(
µA

µA

)
and u−(p) = v+(p) =

1√
2

(
µ̄A′

−µ̄A′

)
. (2.47)

Plugging those choices into the definition of the spinor brackets eq. (2.35) leads for two

positive energies p0
i , p

0
j > 0 to

〈ij〉 =
√
p−i p

+
j e

iϕi −
√
p+

i p
−
j e

iϕj =
√

|sij|eiφij ,

[ij] = −
√
p−i p

+
j e

−iϕi +
√
p+

i p
−
j e

−iϕj =
√

|sij|e−i(φij+π) , (2.48)

where

cosφij =
p1

i p
+
j − p1

jp
+
i√

|sij |p+
i p

+
j

, sinφij =
p2

i p
+
j − p2

jp
+
i√

|sij|p+
i p

+
j

. (2.49)
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So the spinor products are square roots of usual Lorentz scalar products up to a phase.

The expressions above can be analytically continued to negative energies. In case of negative

energy the pi have to be replaced by −pi and for each negative-energy particle an extra

factor of i has to be added to the definition of 〈ij〉 and [ij].

Despite of many advantages of the spinor-helicity formalism, the resulting compact

expressions come with a redundant set of spinor brackets, which are subject to nonlinear

relations eqs. (2.38) and (2.39).

2.3 Lie algebras, Lie superalgebras and supersymmetry

As implied by the general symmetry considerations in subsection 2.1.1 above, Lie alge-

bras [11, 12] generate the symmetry groups underlying almost all physical theories1. A

Lie algebra is a vector space g over a field K with a bilinear (eq. (2.51)), antisymmetric

(eq. (2.52)) multiplication satisfying the Jacobi identity (eq. (2.53)):

[·, ·] : g × g −→ g

(X,Y) 7−→ [X,Y]. (2.50)

The multiplication is referred to as Lie bracket, where ∀A,B,C ∈ g and ∀α, β ∈ K:

[αA + βB,C] = α[A,C] + β[B,C] (2.51)

[A,B] = −[B,A] (2.52)

[A, [B,C]] + [C, [A,B]] + [B, [C,A]] = 0 , (2.53)

which implies: [A,A] = 0 ∀A ∈ g. A Lie group G is a real or complex manifold, endowed

with a group structure, whose group multiplication

G×G −→ G

(g, h) 7−→ g · h−1 (2.54)

is differentiable for all g, h ∈ G. The elements of the Lie algebra G ∈ g form a basis of the

Lie group G and are related to it by the exponential map

g → G

G 7→ exp G. (2.55)

In order to classify Lie algebras, it is necessary to introduce some more notions: the action

of a finite-dimensional, complex Lie algebra g on itself, the vectorspace g, is called the

adjoint action :

ad : g × g −→ g

(A,B) 7−→ adA(B) = [A,B]. (2.56)

1Lie algebras have been named after the Norwegian mathematician Sophus Lie, who studied continuous

and discrete symmetries in the context of partial differential equations. In order to apply those transforma-

tion groups, he linearized the transformations and investigated the infinitesimal generators, which finally

lead to the notion of a Lie algebra.
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The Cartan subalgebra h is the maximal abelian diagonalizable subalgebra of g, whose

dimension is called the rank of the Lie algebra g. Restricting the adjoint action to the

Cartan subalgebra

ad : h × g −→ g

(H,G) 7−→ adH(G) = [H,G] , (2.57)

one can show that all adjoint actions induced by elements of h commute. Hence all maps

ad|h have a common eigenvector, whose eigenvalue depends on the element H ∈ h. For

any given eigenvector Eα ∈ g of the adjoint action ad|H the eigenvalues are given by the

functional α

α : h → C
adH(Eα) = α(H)Eα (2.58)

and are called roots or weights of the adjoint representation. The number of roots

can be determined by dim(g) − rank (g).

Since one can prove that there is only a finite number of roots, Lie algebras can be clas-

sified by those values. In particular, any simple root αi with i = 1, . . . , rank(g) corresponds

to a Chevalley triple, which is an su(2) subalgebra (E+αi
, E−αi

, Hαi
) whose elements satisfy

[
E+αi

, E−αj

]
= δijHαi

and
[
Hαi

, E±αj

]
= ±αj(Hαi

)E±αj
. (2.59)

A representation D of a Lie algebra g is a homomorphism from g to the group of

automorphisms Aut(W ) of a vector space W :

G 7−→ D(G) where D(G) ∈ Aut(W ), G ∈ g (2.60)

The multiplication in g corresponds to the successive application of automorphisms in W :

D(GK) = D(G)D(K) ∀G,K ∈ g. (2.61)

Representations are labeled by the dimension of the carrier space W , which is written as

a bold number. The representation 6 of SU(4) corresponds to 6 × 6 matrices acting on a

two-index total antisymmetric tensor, whose indices can take four values.

Superalgebras and supersymmetry The idea of supersymmetry arose by systemati-

cally exploring possible extensions to the known symmetries of the S-matrix in a quantum

field theory. While Coleman and Mandula showed [13] that the symmetries of the S-matrix

have to be a direct product of Poincaré symmetry and an internal compact symmetry

group, an extension is possible by accompanying the commuting generators of the Poincaré

group with anticommuting generators. Those generators, initially introduced in [14] be-

came known as supercharges lateron [15]. Initiated by those findings, all physically possible

superalgebras have been classified in reference [16].

A Lie superalgebra g is an associative Z2-graded algebra. It is a vector space which

is a direct sum of two vector spaces g0 and g1. In g, a multiplication g × g → g is defined

for Gi ∈ gi with the following properties:
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• Z2-gradation:

[[Gi,Gj ]] ∈ gi+j (mod 2) (2.62)

• graded antisymmetry:

[[Gi,Gj ]] = −(−1)i·j[[Gj ,Gi]]

If i · j = 0, then [[ , ]] defines the usual commutator [ , ], while for i · j = 1 it is an

anticommutator { , }.

• generalized Jacobi-identity:

(−1)i·k[[Gi, [[Gj ,Gk]]]] + (−1)j·i[[Gj , [[Gk,Gi]]]] + (−1)k·j[[Gk, [[Gi,Gj ]]]] = 0 .

While the bosonic part g0 is a Lie algebra, the fermionic part g1 is not. All superalgebras

considered in the following are Lie superalgebras.

One substantial part of any supersymmetry algebra are the fermionic supercharges

Q relating bosons to fermions. In particular, acting on a particle state with a certain

helicity, Q raises the helicity by 1
2 while Q lowers it by one half (see eq. (2.64) below).

Starting from a non-supersymmetric Lie algebra, there is a minimal number of supercharges

which has to be added for the supersymmetry algebra to be consistent. A supersymmetric

generalization of the Poincaré algebra is called extended if it exhibits more than this minimal

number of supercharges. For example the minimal supersymmetrized version of Yang-Mills

theory in four dimensions exhibits one supercharge for each possible spinor index A =

1, 2, A′ = 1, 2. Thus the minimal set consists of four supercharges. This theory is referred

to as N=1 SYM theory, where N labels the number of minimal sets. Correspondingly,

the N=4 supersymmetrically extended Yang-Mills theory discussed below does contain 16

supercharges: four types of supercharges for each possible spinor index.

If there is more than one minimal set, it is possible to mix the supercharges among each

other, which amounts to a rotation in an N -dimensional complex space. The corresponding

SU(N ) symmetry in the fermionic sector is called R-symmetry.

Searching for physically sensible theories with supersymmetry in four spacetime di-

mensions strongly constrains the number of candidate Lie superalgebras [15, 17]. Instead

of giving a complete classification here, the N=4 superconformal algebra su(2, 2|4) which

generates the symmetry group of N=4 SYM theory will be presented and discussed as an

example in a representation acting on amplitudes in subsection 2.6 below.

2.4 On-shell superspace

The SU(N ) R-symmetry rotating the supercharges QAa,Q
A′a

, a ∈ {1, . . . ,N}, can be made

manifest in the on-shell superspace [18, 19]. States in this space are designed such that

they diagonalize the usual momentum operator, but at the same time are also eigenstates

of the supermomentum corresponding to the supertranslations. However, since Q and

Q anticommute, it is not possible to construct states diagonalizing both operators: here

eigenstates of Q will be chosen. Using N complex-valued Grassmann parameters η to label
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the positions in the complex vector space spanned by the supercharges and acted on with

rotations R, on-shell states are defined as

|µ, µ̄, η〉 = eQ
A′ a

ω̄A′ηa |µ, µ̄,+s〉 (2.63)

where s = N
4 is the maximal possible helicity in the theory considered and the spinor ω̄A′

is chosen2 such that [ω̄, µ̄] = 0. Leaving out the momentum spinors µ, µ̄ in the labeling of

states below, conventions for the supercharges are

QA a| + s〉 = 0, QA a| − s〉 = µA| − s+ 1
2〉a

Q
A′ a| − s〉 = 0, Q

A′ a| + s〉 = µ̄A′ | + s− 1
2 〉a. (2.64)

Supersymmetry with parameter ζ̄A′acts on those states as

eQ
A′ a

ζ̄A′ a |η〉 = |η + [ζ̄ µ̄]〉 , (2.65)

in other words, the operator Q is really a supertranslation by shifting the state |η〉.
Given the Grassmannian variables η, one can define a superwavefunction, which is of

highest helicity s of the theory. Expanding into powers of η, one obtains

Φ(p, η) =A(p) + ηa1A
a1(p) +

1

2
ηa1ηa2A

a1a2(p) +
1

3!
ηa1ηa2ηa3A

a1a2a3(p)+

· · ·

+
1

(4s)!
ηa1ηa2ηa3 · · · ηa4sA

a1a2a3···a4s(p) . (2.66)

The superwavefunction introduced above provides the opportunity to write amplitudes

in maximally supersymmetric theories in a completely supersymmetric way. This implies

that it is not necessary to fix which states from the multiplet take part in a scattering

process. One rather obtains an expression from which, by acting with an appropriate

choice of derivatives with respect to η, the final result for a certain choice of particles can

be obtained. As this mechanism is specific to the theory under consideration and closely

related to the supersymmetric Ward identities discussed in the next subsection, it will be

explored for N=4 SYM theory and N=8 supergravity separately in subsections 2.6.2 and

2.7.3 respectively.

2.5 Supersymmetric Ward identities and different MHV sectors

As for any manifest symmetry of an action, Ward identities relating different amplitudes

can be derived. This is in particular useful for supersymmetry: considering the action (2.64)

of generators Q and Q on states, amplitudes with different types of particles are related [20,

21, 22, 23]. It is the supersymmetric Ward identities, which simplify the investigation of

supersymmetric theories at the level of amplitudes.

2The condition [ω̄, µ̄] = 0 fixes ω̄A′ only up to an additive shift: ω̄A′ ∼ ω̄A′ + cµ̄A′ . However, this does

not alter the state |η〉.
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Supersymmetric Ward identities (SWI) can be derived in concordance with eq. (2.10)

using the fact that supercharges annihilate the vacuum of the theory, Q|0〉 = 0, such that

0 = 〈0| [Q(ξ), β1β2 · · · βn] |0〉 =

n∑

i=1

〈0|β1β2 · · · [Q(ξ), βi] · · · βn|0〉 . (2.67)

Here the βi are arbitrary fields corresponding to states from the multiplet under con-

sideration, Q(ξ) = 〈Qξ〉 is a bosonized supersymmetry operator, which has been ob-

tained by spinor contraction with the anticommuting supersymmetry parameter ξ, and

〈0|β1β2 · · · βn|0〉 will be called the source term for the SWI. Source terms need to have

an odd number of fermions, because amplitudes derived by acting on terms with an even

number of fermions will vanish trivially. A standard result implied by eq. (2.67) is the

disappearance of all amplitudes with helicity structure 〈+++ · · ·+〉 and 〈−++ · · ·+〉 and

their parity conjugates [7]. Here and in the following particles labeled by + and − are

implicitely understood to be of (positive and negative) maximal helicity s. If there are

other particles involved in an amplitude, the participating fields will be stated explicitly.

MHV and NpMHV amplitudes Amplitudes in maximally supersymmetric field theo-

ries can be classified by the number of particles with negative helicity −s. Where k denotes

the number of these particles, the label p in NpMHV is related to it via

p = k − 2. (2.68)

Maximally helicity violating (MHV) amplitudes are the simplest nontrivial amplitudes in

maximally supersymmetric field theories. In case of particles with maximal helicity s, they

have the structure3

〈− − + + · · ·+〉. (2.69)

With little effort one can show that any SWI for maximally helicity violating amplitudes

(MHV) relates precisely two amplitudes, which in turn means that a known MHV amplitude

implies expressions for all amplitudes related by SWI. This in turn means that the knowledge

of one MHV amplitude determines the complete set of MHV amplitudes for a particular

number of legs [7]. While it is easy to tell whether a certain amplitude resides in the MHV

sector for pure gluon amplitudes in N=4 SYM and pure graviton amplitudes in N=8

supergravity, for amplitudes containing other particles a more general notion is necessary.

Using the on-shell formalism introduced in the previous subsection, one can add up the

number of Grassmann variables for each particle in the whole amplitude. The total number

of η’s in the MHV sector will be 8s, where the maximal helicity s has been defined after

eq. (2.63).

While in the four- and five-point case the only nonvanishing configurations are MHV (or

anti-MHV), the advent of a sixth leg introduces a new class of helicity structures, the so-

called next-to-MHV (NMHV) amplitudes. Here it is necessary to distinguish three different

3MHV amplitudes are simply N0MHV amplitudes with k = 0 + 2 = 2 particles of helicity −s.
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helicity orderings

X : (− −− + ++) Y : (−− + − ++) Z : (− + − + −+) . (2.70)

Expressions for the amplitudes are distinct for the different orderings X, Y and Z.

However, since there is no procedural difference in deriving the expressions, amplitudes

and supersymmetry relations will be generally illustrated for the helicity configuration X

in section 5 below.

The simple relation of amplitudes via SWI as encountered in the MHV sector does not

carry over to the NMHV sector: here each supersymmetric Ward identity relates three

amplitudes, which requires two known amplitudes in order to determine a third one4.

In terms of numbers of Grassmann variables, the change from the MHV to the NMHV

sector is obvious. Adding one particle of maximal negative helicity increases the number

of η’s by 4s. Continuing this counting one immediately finds that an NpMHV amplitude

exhibits 4s(p + 2) = 4sk Grassmann variables η in the on-shell formalism.

Three-particle amplitudes vanish for real external momenta in maximally supersym-

metric theories. However, considering complex external momenta instead renders those

amplitudes nontrivial. In particular the amplitude 〈− + +〉 is referred to as MHV and

can be shown to be the lowest nontrivial amplitude accessible in twistor string theory (see

subsection 3.2.2).

2.6 N=4 super Yang-Mills theory

2.6.1 Fields and action

The maximally supersymmetric gauge theory in four dimensions containing particles up to

spin one can be obtained as dimensional reduction of N=1 supersymmetric SYM theory in

ten dimensions. Its field content is the N=4 irreducible supersymmetric multiplet consisting

of a gauge potential Aµ, four chiral and anti-chiral spinors χa
A and χ̃A′

a and six real scalars

φab. Those are combined in the action [10, 24]5

S =

∫
d4x Tr

{
−1

4FµνF
µν + 1

2DµφabD
µφab − 1

4 [φab, φcd] [φ
ab, φcd]

+iχ̄γµDµRχ− i
2

(
¯̃χa[Rχb, φab] − χ̄a[Lχ̃b, φ

ab]
)}

, (2.71)

where the spinors χ and χ̃ are related by χ̃a = C(χ̄a)T and combine into four gluini λa

λ =

(
Rχa

Lχ̃a .

)
(2.72)

The four-dimensional charge conjugation operator C as well as the γ-matrices have been

defined in eq. (2.20) and eq. (2.12) respectively. N=4 SYM theory is a gauge theory with

the Yang-Mills gauge group SU(Ncolor). The trace in eq. (2.71) is taken over matrices

4An example for N=1 supersymmetry can be found in eq. (5.33).
5Note that the roles of R and L are interchanged here compared the first reference.
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Tαi which transform in the adjoint representation of this group and are normalized to

Tr(TαT β) = δαβ .

Here, Greek indices are four-dimensional Lorentz-indices, and spinor indices A,B, . . .

and A′, B′, . . . and have been suppressed in the above action. Latin indices a, b, . . . label

the internal R-symmetry group SU(4) and are raised and lowered with the SU(4)-invariant

tensor:

φab =
1

2
εabcdφcd and φab =

1

2
εabcdφ

cd . (2.73)

The covariant derivative contains the Yang-Mills coupling g and is defined as

Dµ = ∂µ − igAµ , (2.74)

with the help of which the field strength F can be related to the gauge connection:

Fµν = ig−1[Dµ,Dν ] = ∂µAν − ∂νAµ − ig[Aµ, Aν ] . (2.75)

Supersymmetry transformations are parameterized by four complex spinors αa which satisfy

the same condition as χa:

δAµ = i (ᾱcγµRχ
c − χ̄cγµRα

c) , (2.76)

δφab = i
(
ᾱbLχ̃a − ᾱaLχ̃b + εabcd

¯̃αcRχd
)
, (2.77)

δRχc = σµνF
µνRαc − γµDµφ

cdLα̃d + 1
2 [φck, φkd]Rα

d , (2.78)

δLχ̃a = σµνF
µνLα̃a + γµDµφabRα

b + 1
2 [φak, φ

kb]Lα̃b . (2.79)

The action eq. (2.71) and the corresponding equations of motion can be shown to be

invariant under the N=4 super Poincaré algebra. Besides of the usual Lorentz and trans-

lational symmetries L, L̄ and P there are in addition the internal SU(4) R-symmetry6 R

and the supertranslations Q, Q̄. Since the theory is pure in the sense that it contains only

the massless supermultiplet (see table 1 below), the generators of super Poincaré symmetry

can be accompanied by superboosts S, S̄,K, the dilatation D, a central charge C and a

hypercharge B to collectively represent the superconformal symmetry. If all of the above

operators are present, the algebra will be u(2, 2|4), while vanishing central charge C leads

to the projective group pu(2, 2|4). Leaving out the hypercharge operator B, one will obtain

the algebra su(2, 2|4), which can be further reduced to psu(2, 2|4) by removing C.

If it comes to exploring the symmetries and the calculation and representation of ampli-

tudes in N=4 SYM theory, the manifestly Lorentz covariant formulation eq. (2.71) is not

the most appropriate. Instead of insisting on Lorentz covariance, the on-shell superspace

introduced in subsection 2.4 will prove a valuable tool to explore symmetries of amplitudes

in N=4 SYM theory. Considering the SU(4) R-symmetry, the on-shell superspace will

6The automorphism group of N=4 supersymmetry algebra is the group U(4). However, due to its adjoint

action on the fields, the sign of the determinant can not be recognized, which in turn implies that only the

subgroup SU(4) is realized.
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exhibit four Grassmann variables, with the help of which the multiplet can be represented

(cf. eq. (2.66)) as [18]

Φ(p, η) = g+(p) + ηaλ
a+(p) +

1

2
ηaηbφ

ab(p) +
1

3!
ηaηbηcε

abcdλ−d +
1

4!
ηaηbηcηdε

abcdg− , (2.80)

where the gluons g± are the gauge bosons for the gauge potential Aµ. Corresponding to

eq. (2.80), the states transform in representations of SU(4) as shown in table 1. In the

Particle g+ λa+ φab λ−a g−

SU(4)-representation 1 4 6 4 1

Table 1: Particles and SU(4) representations of the N=4 multiplet

language of spinor-helicity superspace, the symmetry generators for the superconformal

group can be expressed as7

LA
B = µA∂B − 1

2δ
A
Bµ

C∂C , L̄A′

B′ = µ̄A′

∂̄B′ − 1
2δ

A′

B′ µ̄C′

∂̄C′ ,

D = 1
2∂Cµ

C + 1
2 µ̄

C′

∂̄C′ , Ra
b = ηa∂b − 1

4δ
a
b η

c∂c,

QAb = µAηb, SAb = ∂A∂b,

Q̄A′

b = µ̄A′

∂b, S̄b
A′ = ηb∂̄A′ ,

PAB′

= µAµ̄B′

, KAB′ = ∂A∂̄B′ , (2.81)

where

∂A = ∂/∂µA, ∂̄A′ = ∂/∂µ̄A′ and ∂a = ∂/∂ηa. (2.82)

The non-trivial commutation relations between those generators are

{QAa,Q
b
A′} = δb

aPAA′ , {SAa,S
b
A′} = δb

aKAA′ , (2.83)

[PAA′ ,Sa
B ] = εA′B′Q

a
A′ , [KAA′ ,QBa] = εABS

a
A′ ,

[PAA′ ,SB′a] = εA′B′QAa, [KAA′ ,QB′a] = εA′B′SAa,

[KAA′ ,PBB′

] = δB
Aδ

B′

A′ D + LA
BδB′

A′ + LA′
B′

δB
A ,

{QAa,S
b
B} = εABRb

a + LABδ
b
a + εABδ

b
a(D + C),

{Qa
A′ ,SB′b} = εA′B′Ra

b + LA′B′δa
b + εA′B′δa

b (D − C) (2.84)

where indices a, b, . . . are SU(4)-indices and capital indices A,A′, . . . refer to spinor indices

as defined in eq. (2.22). The bar over an generator distinguishes between the two spinor

representations.

7A nice introduction to superconformal symmetry acting on amplitudes in the language of the spinor-

helicity superspace can be found in [25].
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2.6.2 Tree-level amplitudes in N=4 SYM theory

An amplitude in N=4 SYM can be color-decomposed as8

An(1, 2, . . . , n) = δ(
∑

pi) g
n−2
YM

∑

σ∈Sn/Zn

Tr(T aσ(1) · · ·T aσ(n))An(σ(1), σ(2), . . . , σ(n)),

(2.85)

where the summation is over all (n − 1)! non-cyclic permutations of i = 1, 2, . . . , n. As

before, the number i is understood as a collective label for the momentum pi and helicity

hi of particle i, e.g. 1 ≡ (p1, h1) and matrices Tαi have been defined after eq. (2.72).

The subamplitudes An are independent of the color structure and can be shown to

exhibit the following properties for any type of particles [26]:

• invariance under gauge transformations

• reflection identity: An(1, 2, . . . , n) = (−1)nAn(n, n− 1, . . . , 2, 1)

• invariance under cyclic permutations: An(1, 2, . . . , n) = An(2, 3, . . . , n, 1)

• photon decoupling (or dual Ward) identity:

An(1, 2, 3, . . . , n) +An(2, 1, 3, . . . , n) +An(2, 3, 1, . . . , n)

+ · · · +An(2, 3, . . . , 1, n) = 0. (2.86)

For the MHV configurations (−− + · · ·+) discussed in subsection 2.5, amplitudes with all

external legs being gluons g±, are given by [27]:

An(g−1 , g
−
2 , g

+
3 , . . . , g

+
n ) = i

〈12〉4
〈12〉〈23〉 · · · 〈n1〉 . (2.87)

However, in terms of the superfield Φ(i) = Φ(pi, ηi) introduced in eq. (2.80), it is possible

to write down a superamplitude

An(p, η) = A(Φ(1),Φ(2), . . . ,Φ(n)) , (2.88)

which reads for tree-level MHV amplitudes

AMHV
n = i

δ(4)(p)δ(8)(q)

〈12〉〈23〉 · · · 〈n1〉 . (2.89)

Here the second δ-function ensures the conservation of the supermomentum q =
∑n

i=1 µ
A
i η

a
i ,

where momentum spinors µA
i and Grassmann variables η have been introduced in eq. (2.22)

and subsection 2.4 respectively. Evaluating the Grassmannian δ-function will result in four

spinor brackets corresponding to the contraction of SU(4)-indices. For two negative helicity

8Here the full amplitude including the color information is labeled by An, while the subamplitude is

assigned the non-calligraphic An. However, as the full amplitude will not occur again, the letter An will

label the superamplitude starting from eq. (2.89). Furthermore, as only color-stripped subamplitudes are

considered below, they will simply be referred to as amplitudes for convenience.
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gluons at positions 1 and 2, the numerator factor yields 〈12〉4, thus confirming eq. (2.87).

For any other combination of particles resulting in an amplitude which is an SU(4) singlet,

the numerator factor 〈12〉4 will be replaced by the appropriate expression in concordance

with the supersymmetric Ward identities. Equation (2.89) furthermore reflects the fact

that in the MHV sector the knowledge of exactly one amplitude is sufficient to determine

all others by means of supersymmetric Ward identities elaborated on in subsection 2.5.

For the discussions in section 5 below it is useful to introduce the generating functional

for MHV tree amplitudes [28]

ΩSYM
n =

1

16

An(g−1 , g
−
2 , g

+
3 , g

+
4 , . . . , g

+
n )

〈12〉4
4∏

a=1

n∑

i,j=1

〈ij〉ηiaηja . (2.90)

This functional is a sum of all valid MHV amplitudes with n legs. The desired expression

for a particular MHV amplitude can be extracted by acting with derivatives

g+(i) ↔ 1, λa+(i) ↔ ∂

∂ηia
, φab(i) ↔ ∂2

∂ηia∂ηib
,

λ−a (i) ↔ −1

6
εabcd

∂3

∂ηib∂ηic∂ηid
, g−(i) ↔ 1

24
εabcd

∂4

∂ηia∂ηib∂ηic∂ηid
(2.91)

on ΩSYM
n . Corresponding to the Grassmann variables η in the generating functional, the

total number of derivatives needs to add up to eight.

Including now all further NpMHV sectors (p ≥ 1), the superamplitude can be written

as

An(p, η) = i δ(4)(p)δ(8)(q)
[
P(0)

n + P(4)
n + · · · + P(4n−16)

n

]
, (2.92)

where P(m)
n denotes a homogeneous polynomial of degree m in the Grassmann variables η.

The first term P(0)
n corresponds to the denominator eq. (2.89) above: in this case An(p, η)

is homogeneous of degree eight in η because of δ(8) and thus represents the MHV amplitude

in N=4 SYM theory as explained in subsection 2.5. Other contributions P(m)
n describe to

NpMHV sectors with p = m
4 .

Limiting the consideration to the tree-level, expressions for low-point NMHV pure gluon

amplitudes are presented in ref. [26]. Recently, Drummond and Henn [29] introduced a

recursive procedure delivering expressions for all tree-level NpMHV superamplitudes, which

will be described below. For tree amplitudes, eq. (2.92) can be conveniently rewritten as

An(p, η) = AMHV
n (p, η)

[
1 + PNMHV

n + PN2MHV
n + · · · + PNn−4MHV

n

]
. (2.93)

Since AMHV
n is known, the first interesting part is the NMHV superamplitude ANMHV

n ,

which can be determined by

ANMHV
n = AMHV

n PNMHV
n = AMHV

n

∑

1<s<t<n

Rn;st = i
δ(4)(p)δ(8)(q)

〈12〉〈23〉 · · · 〈n1〉
∑

1<s<t<n

Rn;st , (2.94)

where Rn;st are invariants of the dual superconformal symmetry described in the subsection

below. Since dual (super-)conformal invariants are of degree four in Grassmann variables
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η, the correct overall degree of 12 for an NMHV amplitude is obtained (see eq. (2.92)). The

index n onRn;st refers to the number of legs in the amplitude and the labels s, t = 2, . . . , n−1

are assumed to be separated by at least two9: t− s ≥ 2.

It turns out that this procedure can be repeated. In the next step, the N2MHV ampli-

tude

AN2MHV
n = AMHV

n PN2MHV
n

= AMHV
n PNMHV

n

[∑
R∗ +

∑
R
]

(2.95)

can be obtained from the NMHV amplitude by mulitplying with a factor containing a

sum of dual superconformal invariants Rn;st and a summation over generalized conformal10

invariants R∗. From the schematic form of eq. (2.95) one can guess the general pattern: in

order to get from NpMHV to Np+1MHV, one has to multiply the expression for the NpMHV

amplitude with a factor consisting of two sums of (generalized) conformal invariants. As

the determination of summation limits and the precise form of the conformal invariants R∗

is involved, the technical details of the prescription are left to reference [29]. Nevertheless,

expressions for all tree amplitudes in any MHV sector can be obtained explicitly from

combinations of dual (super-)conformal invariants.

2.6.3 Dual (super)conformal symmetry

In addition to the superconformal symmetry described above, a dual version thereof has

been revealed recently [25] as a symmetry of N=4 SYM theory. In contrast to the ordi-

nary superconformal symmetry, its dual counterpart is realized on planar amplitudes as

in eq. (2.10), but is not a symmetry of the action eq. (2.71) . While the usual supercon-

formal symmetry is believed to be an exact symmetry of the quantum theory, the dual

superconformal symmetry becomes anomalous at loop level.

The natural description of dual superconformal symmetry takes place in a space dual

to the on-shell superspace. The idea of the dual superspace emerged while searching for

a space, in which the momentum and supermomentum conservation conditions implied by

the two δ-functions in eq. (2.92) are naturally taken care of. Coordinates for the dual

superspace are x and θ, which are related to the momentum spinors µA
i , µ̄

A′

i and the

Grassmann variables η via

n∑

i=1

µA
i µ̄

A′

i = 0 ⇒ xAA′

i − xAA′

i+1 = µA
i µ̄

A′

i ,

n∑

i=1

µA
i η

a
i = 0 ⇒ θaA

i − θa A
i+1 = µA

i η
a
i , (2.96)

9This can be understood graphically by interpreting Rn;st as the box coefficient for a 3-mass IR-divergent

integral as explained in subsection 2.6.4 below.
10The quantity R∗ is not invariant under the full dual superconformal group, but only under the dual

conformal subgroup, as has been shown in [29].
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and take care for the conservation of the momenta after imposing the cyclicity conditions

xn+1 ≡ x1 , θn+1 ≡ θ1 (2.97)

where n is the number of particles involved in the scattering process for which an amplitude

shall be considered11.

Employing the variables defined above, it was proven in [25] that tree-level amplitudes

are annihilated by generators

P̂AA′ =
∑

i

∂iAA′ , Q̂Ab =
∑

i

∂iAb, Q̂
b

A′ =
∑

i

[θAb
i ∂iAA′ + ηb

i∂iA′ ],

L̂AB =
∑

i

[xi(A
A′

∂iB)A′ + θA
i(A∂iB)A + µi(A∂iB)], L̂A′B′ =

∑

i

[xi(A′
A∂iB′)A + µ̄i(A′∂iB′)],

R̂a
b =

∑

i

[θAa
i ∂iAb + ηa

i ∂ib − 1
4δ

a
b θ

Ac
i ∂iAc − 1

4η
c
i∂ic],

Ŝa
A =

∑

i

[θb
iAθ

Ba
i ∂iBb − xiA

B′

θBa
i ∂BB′ − µiAθ

Ga
i ∂iG − xi+1 A

B′

ηa
i ∂iB′ + θB

i+1 Aη
a
i ∂iB ],

ŜA′a =
∑

i

[xiA′
B∂iBa + µ̄iA′∂ia], D̂ =

∑

i

[xAA′

i ∂iAA′ + 1
2θ

Aa
i ∂iAa + 1

2µ
A
i ∂iA + 1

2 µ̄
A′

i ∂iA′ ],

K̂AA′ =
∑

i

[xiA
B′

xiA′
B∂iBB′+xiA′

Bθb
iA∂iBb+xiA′

BµiA∂iB+xi+1A
B′

µ̄iA′∂iB′+µ̄iA′θb
i+1 A∂ib].

(2.98)

where

∂iAA′ =
∂

∂xAA′

i

, ∂iAa =
∂

∂θAa
i

, (2.99)

and derivatives ∂iA, ∂iA′ and ∂ηa
i have been defined without the particle label i in eq. (2.82).

Algebras eq. (2.81) and eq. (2.98) overlap on the operators Q̄ = ˆ̄S and S̄ = ˆ̄Q [25].

Furthermore, generators ˆ̄K and ˆ̄S are exact symmetries of tree amplitudes, but become

anomalous starting at the one-loop level because of the presence of infrared divergences. It

is those anomalies, which the conformal equations discussed in subsection 2.6.5 below are

implied by.

Tree-level amplitudes in N=4 SYM theory have been expressed in the last subsection

in terms of the quantities Rn;st, which are invariant under dual superconformal transfor-

mations [25]. In terms of variables eq. (2.96), they are given by

Rr;st =
〈s s− 1〉〈t t− 1〉δ(4)(〈r|xrsxst|θtr〉 + 〈r|xrtxts|θsr〉)

x2
st〈r|xrsxst|t〉〈r|xrsxst|t− 1〉〈r|xrtxts|s〉〈r|xrtxts|s− 1〉 . (2.100)

where xi − xj = xij, θi − θj = θij and r, s, t = 1, . . . , n. Correspondingly, 〈r| and 〈s|
are momentum spinors for particles with momentum pr, ps and 〈..|..|..|..〉 is the obvious

generalization of the spinor strings, which have been introduced in eq. (2.34) above. The

11Variables xAA′

shall not be confused with local coordinates as used in subsection 2.1.1. They denote

the difference of consecutive momenta here and below.
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explicit form of the generalized dual conformal invariants R∗ necessary for amplitudes be-

yond NMHV in eq. (2.95) is similar to eq. (2.100). However, as those invariants will not

be used below and the summation conventiens and boundary conditions need elaborate

explanantions, the discussion is left to reference [29].

Commutators of the generators of ordinary (2.81) and dual superconformal (2.98) sym-

metries have been shown to result in an infinite-dimensional Yangian symmetry of tree-level

amplitudes in [30].

2.6.4 One-loop amplitudes and IR equations in N=4 SYM

Any one-loop amplitude in N=4 SYM theory can be expanded [31, 32] into a basis of

scalar box integrals12 Ii. However, in the context of leading singularities discussed below

(subsection 3.3.1) and dual conformal symmetry it is more convenient to express one-loop

amplitudes in terms of box functions Fi

A1-loop =
∑

{r,s,t,u}

Cr,s,t,uFr,s,t,u (2.101)

which differ from the scalar box integrals Ii by a kinematical factor Ri [32]

Fi = − Ii

2
√
Ri

. (2.102)

The coefficients Ci in the expansion eq. (2.101) are called box coefficients.

Considering whether there are one or more legs attached to the corners of a box naturally

leads to the following categories:

b
b

b

1-mass (1m)

b
b

b

b
b

b

2-mass easy (2me)

b
b

b

b
b

b

2-mass hard (2mh)

b
b

b

b
b

b

b
b

b

3-mass (3m)

b
b

b

b
b

b

b
b

b

b
b

b

4-mass (4m)

(2.103)

The corresponding box functions and their coefficients are conveniently labeled by the

distribution of legs onto the corners of the boxes. Given the known number of legs n, it

is sufficient to note the first legs attached to the four corners of the box. If not stated

differently, the first entry of the four-element list r, s, t, u ∈ {1, . . . , n} is assumed to label

the massless leg in the upper right corner. Despite being redundant, the type of box will

be noted as a superscript on the coefficient (see eq. (2.108) below for explicit examples).

Employing those conventions, eq. (2.101) reads

A1-loop
n (µ, µ̄, η, ǫ) =

∑

{r,s,t,u}

Cr,s,t,u(µ, µ̄, η)Fr,s,t,u(µ, µ̄, ǫ) . (2.104)

12For scalar particles, those correspond to box-shaped one-loop Feynman diagrams.
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While box coefficients Cr,s,t,u as well as their higher-loop generalizations are IR-finite and

rational functions, box functions are IR-divergent objects, which have to be dimensionally

regularized [33]

F 1m(p, q, r, P ) = −rΓ
ǫ2
(
(−s)−ǫ + (−t)−ǫ − (−P 2)−ǫ

)

F 2me(p, P, q,Q) = −rΓ
ǫ2
(
(−s)−ǫ + (−t)−ǫ − (−P 2)−ǫ − (−Q2)−ǫ

)

F 2mh(p, q, P,Q) = −rΓ
ǫ2

(
1

2
(−s)−ǫ + (−t)−ǫ − 1

2
(−P 2)−ǫ − 1

2
(−Q2)−ǫ

)

F 3m(p, P,R,Q) = −rΓ
ǫ2

(
1

2
(−s)−ǫ +

1

2
(−t)−ǫ − 1

2
(−P 2)−ǫ − 1

2
(−Q2)−ǫ

)
,(2.105)

where I4m has not been listed because of its IR finiteness. Here 2ǫ = 4 −D and

rΓ = Γ(1 + ǫ)Γ2(1 − ǫ)/Γ(1 − 2ǫ) . (2.106)

In the notation F (K1,K2,K3,K4) of eq. (2.105), capital letters define sums of consecutive

massless momenta, and lower case letters correspond to single (null) momenta. In addition,

the two main kinematical invariants are defined as s = (K1 +K2)
2 and t = (K2 +K3)

2.

Box coefficients Cr,s,t,u are not independent objects, but are connected by infrared (IR)

equations [34, 35]. Those equations originate in the fact that all infrared divergences have

to cancel in the scheme of dimensional regularization. More explicitly, the relation of

the infrared divergences of the one-loop amplitude to the tree amplitude can be derived

from considering the factorization properties of one-loop amplitudes for an internal soft

gluon [36, 37].

All IR equations are encoded in the IR consistency condition

A1-loop
∣∣∣
IR

= −rΓ
ǫ2

n∑

i=1

(−[[i]]2)
−ǫAtree, (2.107)

collecting the various IR-divergent contributions to the dimensionally regularized one-loop

amplitudes of N=4 SYM where the subscript IR denotes the IR-divergent part of the

amplitude.

In order to obtain a particular IR equation, one picks a kinematical invariant, whose IR

behavior shall be considered, and expands the left hand side of eq. (2.107) using eqs. (2.104)

and (2.105). There are two different situations:

• If the considered kinematical invariant is of the form [[i]]2, the sum of box coefficients

from the left hand side has to be proportional to the tree amplitude Atree.

• For kinematical invariants of the form [[i]]m with m > 2 there is no contribution from

the right-hand side of eq. (2.107). Thus the total sum of box coefficients will vanish,

which leads to a relation purely between box coefficients themselves.

Conveniently, kinematical invariants [[i]]m with (2 ≤ m ≤ ⌊n/2⌋ defined in eq. (2.41) are used

to label the corresponding IR equation. Considerations can be limited to m = 2, ..., ⌊n/2⌋,
because all other situations are related to those by [[i]]m = [[i+m]](n−m).
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The resulting IR equations are relations between IR-finite quantities, tree amplitudes

and one-loop box coefficients. It is not difficult to count the number of IR equations for a

particular number of legs. Taking again the momentum conservation into account, there

are n(n−3)
2 independent IR equations in total, which split up into n equations involving the

tree amplitude and n(n−5)
2 pure one-loop equations.

The derivation of an IR equation is probably best explained by using an example:

considering the kinematical invariant s12 = [[1]]2 in a six-particle one-loop calculation, one

will have to scan all possible box configurations for the occurrence of this term. In particular,

this would happen at

1

23

4
6

b
b

b

I1m(1, 2, 3, 4)

6

12

3
5

b
b

b

I1m(6, 1, 2, 3)

1

23
4 b

b

b

5
6

b
b

b

I2mh(1, 2, 3, 5)

5

61
2 b

b

b

3
4

b
b

b

I2mh(5, 6, 1, 3)

3

45
6 b

b

b

1
2

b
b

b

I2mh(3, 4, 5, 1)

(2.108)

Taking the prefactors in eq. (2.107) into account, the IR equation corresponding to [[i]]2

reads:

C1m
1234 + C1m

6123 + 1
2C

2mh
1235 − 1

2C
2mh
5613 − 1

2C
2mh
3451 = Atree . (2.109)

2.6.5 Dual conformal constraints

The IR equations discussed in the previous subsection represent only a subset of all relations

between box coefficients. As already mentioned above, operators ˆ̄K and ˆ̄S of the dual

superconformal symmetry are anomalous starting at one-loop level due to the occurence

of infrared divergences in the box functions Fr,s,t,u. Below only the dual conformal group

subgroup of dual superconformal symmetry shall be considered, thus the considerations

will be limited to the anomaly corresponding to ˆ̄K. Constraints on amplitudes implied by

the anomalous symmetry have been investigated in [38, 39], whose main results shall be

reviewed here as a basis for the investigation in section 6.

Two important results have been obtained for a slightly modified version13 ˆ̄K′ of the

original operator ˆ̄K. The conformal anomaly of the one-loop amplitude is proportional to

the tree amplitude [25]

ˆ̄K′A1-loop = −4rΓ
ǫ
Atree

n∑

i=1

xµ
i+1(−x2

i i+2)
−ǫ (2.110)

where the factor rΓ and momentum differences xAA′

= xµ have been defined in eqs. (2.106)

and (2.96) respectively. The invariance of box coefficients under dual superconformal sym-

13Certain objects can be shown to be covariant only rather than invariant under the action of the symmetry

generator ˆ̄K in the form given in eq. (2.98). However, in order to simplify the calculations by using objects

invariant under the symmetry, one defines ˆ̄K′ → ˆ̄K +
Pn

i=1 x
µ
i as suggested in [30].



2.6. N=4 super Yang-Mills theory 27

metry
ˆ̄K′Cr,s,t,u = 0 (2.111)

has been proven in [40].

Applying the symmetry generator ˆ̄K′ to both sides of eq. (2.104), yields eq. (2.110) on

the left hand side, while on the right hand side the operator passes through the coefficients

Cr,s,t,u because of eq. (2.111) and thus directly acts on the box functions Fr,s,t,u, whose

anomaly structure resembles those of their infrared divergences eq. (2.105). By carefully

sorting out coefficients, n(n−4) independent conformal constraints have been derived in [38].

In parallel to the IR equations, conformal equations fall into two categories. In terms of

Ei,k :=
i+n−2∑

j=k+1

Ci,k,j,i−1 −
k−1∑

j=i+1

Ci,j,k,i−1 , (2.112)

one finds

• n(n− 3) combinations of box coefficients to vanish

Ei,k = 0 , (2.113)

where i = 1, ..., n, k = i+2, ..., i+n−3. Since there are 2n algebraic identities among

them, there are n(n−5) independent constraints. These constraints imply the n(n−5)
2

IR equations in which the tree amplitude is not involved, but also have n(n−5)
2 new

constraints.

• n combinations of (2-mass hard and 1-mass) box coefficients to equal the tree ampli-

tude

Ei,i−2 = −Ei−1,i = −2Atree
n , (2.114)

where i = 1, ..., n and eq. (2.112) has been generalized for the boundary cases

Ei,i−2 = −Ei−1,i := −
i+n−3∑

j=i+1

Ci−2,i−1,i,j . (2.115)

These conformal equations are in one to one correspondence with the n IR equations

with two-particle channels.

How are dual conformal constraints explicitly related to the IR equations discussed in

the previous subsection? As shown in [38], any IR equation labeled by a kinematic invariant

[[i]]m with m = 2, ..., ⌊n/2⌋ can be written down as a particular combination of E(i, k)

[[i]]2 : Ei,i+2 + Ei+2,i − Ei+3,i = −2Atree
n , (2.116)

and

[[i]]m : Ei,i+m + Ei+m,i − Ei+1,i+m − Ei+m+1,i = 0 for m ≥ 3 . (2.117)
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2.7 N=8 supergravity

After presenting the N=8 supersymmetric multiplet and discussing the action of N=8 su-

pergravity in the next subsection, the necessary steps to obtain this SU(8) invariant theory

and the origin of the hidden E7(7) symmetry will be described in the next subsection 2.7.2.

Amplitudes in N=8 supergravity are explored in subsection 2.7.3. A detailed discussion

of recent results, finiteness and counterterms in N=8 supergravity can be found as an

introductory subsection 5.1 to the investigation of the R4 counterterm.

2.7.1 Fields and action

The maximally supersymmetric field theory in four dimensions containing particles up to

spin two can be obtained from compactifying the N=1, d = 11 supergravity on a torus

T 7 [41, 42, 43]. The physical field content consists of a vierbein (or graviton), 8 gravitini,

28 abelian gauge fields, 56 Majorana gauginos, and 70 real (or 35 complex) scalars, which

can be collected into a single massless N=8 (on-shell) supermultiplet:

Particle B+ F a+ Bab+ F abc+ Xabcd F−
abc B−

ab F−
a B−

SU(8)-representation 1 8 28 56 70 56 28 8 1

Table 2: Particles and SU(8) representations of the N=8 supergravity multiplet

Interactions of those particles are governed by the action of N=8 supergravity given in [44].

As this action is very long and complicated and needs several additional definitions in order

to be written in an accessible form, it will not be stated here. However, it is the N=8

supersymmetric completion of the Einstein-Hilbert action eq. (5.1) and has the following

form:

SSUGRA =

∫
d4x
(
eR+ (N=8 supersymmetric completion)

)
(2.118)

where e =
√−g is the determinant of the vierbein emµ . The Ricci scalar and Ricci tensor

R = gµνRµν and Rµν = Rσ
µσν , (2.119)

are derived from the Riemann tensor

Rρ
σµν = ∂µΓρ

νσ − ∂νΓρ
µσ + Γρ

µλΓλ
νσ − Γρ

νλΓλ
µσ (2.120)

where

Γρ
µν = 1

2g
ρκ(∂µgκν + ∂νgκµ − ∂κgµν) . (2.121)

2.7.2 Coset structure and hidden symmetry

Contrary to the situation in N=4 SYM theory, the SU(8) R-symmetry in table 2 is not vis-

ible directly in the four-dimensional compactified theory. After compactifying N=1, d = 11

supergravity on the torus T 7 all but one type of particles transform in representations of
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SU(8). Vector bosons behave exceptional: in the ungauged compactified theory they form

an antisymmetric tensor representation of SO(8). However, employing their Bianchi iden-

tities and equations of motion, a much larger symmetry leading to the notion of generalized

electric-magnetic duality transformations can be realized [44]. Upon closer investigation of

these duality transformations, it is possible to maximally enlarge the corresponding duality

group by adding further scalars. Not all of those additional scalars are physical. After

gauging a resulting local SU(8) symmetry in order to reduce the degrees of freedom of the

generalized duality group, 70 physical scalars remain. These scalars parameterize the coset
E7(7)

SU(8) [43, 44], where E7(7) denotes a non-compact real form of E7, which has SU(8) as

its maximal compact subgroup. In other words, the scalars X can be identified with the

non-compact generators X of E7(7). The resulting gauge is called unitary.

In unitary gauge the 63 compact generators Rb
a of SU(8) can be joined with 70 gen-

erators Xa1...a4 to form the adjoint representation of E7(7). Here Xa1...a4 transforms under

SU(8) in the four-index antisymmetric tensor representation (a, b = 1, . . . , 8). The commu-

tation relations between those generators are given schematically by

[R,R] ∼ R , [X,R] ∼ X , and [X,X] ∼ R . (2.122)

While the first commutator is just the usual SU(8) Lie algebra, the second one follows

straightforwardly from the identification of X with the 70 of SU(8). The nontrivial state-

ment about E7(7) invariance resides in the third commutator in eq. (2.122). Assuming the

two generators to be represented as Xa1...a4
1 and X2 a5...a8 , where the upper-index version

can be obtained by employing the SU(8)-invariant tensor,

Xa1...a4 =
1

24
εa1a2a3a4a5a6a7a8Xa5...a8 , (2.123)

the third relation reads explicitly (see e.g. ref. [19]),

−i [Xa1...a4
1 ,X2 a5...a8 ] = εb a2a3a4

a5a6a7a8
Ra1

b + εa1b a3a4
a5a6a7a8

Ra2
b + . . . + εa1a2a3a4

a5a6a7b Rb
a8
. (2.124)

Here εa1a2a3a4
a5a6a7a8

= 1,−1, 0 if the upper index set is an even, odd or no permutation of the

lower set, respectively. For a more general discussion of the properties of E7(7), see appendix

B of ref. [43].

2.7.3 Tree-level amplitudes in N=8 supergravity

For amplitudes in N=8 supergravity the color trace, which forces particles in gauge-theory

subamplitudes to remain in a certain cyclic order, does not exist. Instead, supergravity

amplitudes are symmetric under exchange of particles with the same helicity. The full

amplitude MSUGRA
n (1, 2, . . . , n) can be written as

MSUGRA
n (1, 2, . . . , n) =

(κ
2

)(n−2)
MSUGRA

n (1, 2, . . . , n), (2.125)

where the subamplitude14 MSUGRA
n and MSUGRA

n differ by powers of the gravitational cou-

pling constant κ =
√

32πGN only. The four- and five-point MHV amplitudes for gravitons

14As for N=4 SYM theory, subamplitudes M will be simply referred to as amplitudes below.
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B± are given by [45]

MSUGRA
4 (B−

1 , B
−
2 , B

+
3 , B

+
4 ) = i 〈12〉8 [12]

〈34〉N(4)
,

MSUGRA
5 (B−

1 , B
−
2 , B

+
3 , B

+
4 , B

+
5 ) = i 〈12〉8 ε(1, 2, 3, 4)

N(5)
,

(2.126)

where ε(i, j,m, n) has been defined in eq. (2.46) and

N(n) ≡
n−1∏

i=1

n∏

j=i+1

〈ij〉 . (2.127)

The higher-point MHV graviton amplitudes were first written down in reference [45]. Ex-

plicit expressions for other helicity configurations are rare. However, in [46] a prescription

is given how to calculate any N=8 supergravity tree-level amplitude by employing “gravity

subamplitudes”, Britto-Cachazo-Feng-Witten (BCFW) recursion relations, and supercon-

formal invariants [25, 29]. This formalism makes use of the field theory subsector of the

KLT relations described in subsection 2.8.

In the same manner as for N=4 SYM (see eq. (2.90)) it is possible to write down a

generating functional for MHV amplitudes in N=8 supergravity [28]

ΩSUGRA
n =

1

256

Mn(B−
1 , B

−
2 , B

+
3 , B

+
4 , . . . , B

+
n )

〈12〉8
8∏

A=1

n∑

i,j=1

〈ij〉ηiAηjA , (2.128)

from which the particular expressions can be obtained by acting with the appropriate

derivatives with respect to the anticommuting variables η:

B+
i ↔ 1, F a+

i ↔ ∂

∂ηi a
, · · · , Xabcd ↔ ∂4

∂ηi a∂ηi b∂ηi c∂ηi d
, · · · ,

· · · , F−
i a ↔ − 1

7!
εabcdefgh

∂7

∂ηi b∂ηi c . . . ∂ηi h
, · · · , B−

i ↔ 1

8!
εabcdefgh

∂8

∂ηi a∂ηi b . . . ∂ηi h
.

(2.129)

Again the number of derivatives is connected to the helicity of the state. However, for

an MHV amplitude in N=8 supergravity there have to be 16 derivatives. As in the N=4

situation, the resulting amplitudes automatically obey the MHV supersymmetric Ward

identities (see subsection 2.5). For example, a two-gravitino two-graviton amplitude will

read:

〈F 5+ F−
5 B+B−〉 ≡ M4(F

5+
1 , F−

2,5, B
+
3 , B

−
4 )

= −
(

∂

∂η15

)(
1

7!
ε12345678

∂7

∂η21 . . . ∂η24∂η26 . . . ∂η28

)

×
(

1

8!
ε12345678

∂8

∂η41 . . . ∂η48

)
Ω4 . (2.130)
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2.8 KLT relations in the field-theory limit

Although KLT relations originate in the close connection of open and closed string ampli-

tudes as will be discussed in subsection 3.1.2, they have proven to be an indispensable tool

for calculations in maximally supersymmetric field theories. This traces back to the fact

that N=4 SYM and N=8 supergravity actions arise as the zeroth-order terms in the low-

energy effective actions of open and closed string theory respectively, as will be described

in subsection 3.1.3. Here the results for pure field theory will be stated, and the identifi-

cation of states between the two maximally supersymmetric field theories will be discussed

in detail.

The field-theory KLT relations connect amplitudes in N=8 supergravity with permuted

sums of products of amplitudes in N=4 SYM theory. While the relations are remarkably

simple for lower-point amplitudes, their complexity grows with the number of legs:

M tree
4 (1, 2, 3, 4) = −is12Atree

4 (1, 2, 3, 4)Atree
4 (1, 2, 4, 3) ,

M tree
5 (1, 2, 3, 4, 5) = is12s34A

tree
5 (1, 2, 3, 4, 5)Atree

5 (2, 1, 4, 3, 5) (2.131)

+ is13s24A
tree
5 (1, 3, 2, 4, 5)Atree

5 (3, 1, 4, 2, 5) ,

M tree
6 (1, 2, 3, 4, 5, 6) = −is12s45Atree

6 (1, 2, 3, 4, 5, 6)
[
s35A

tree
6 (2, 1, 5, 3, 4, 6)

+(s34 + s35)A
tree
6 (2, 1, 5, 4, 3, 6)

]

+ P(2, 3, 4) ,

M tree
n (1−, 2−, 3+, . . . , n+) = −i 〈12〉8

×
[

[12][n−2 n−1]

〈1 n−1〉N(n)

( n−3∏

i=1

n−1∏

j=i+2

〈ij〉
) n−3∏

l=3

(
−〈n|

n−1∑

s=l+1

(ks)µ|l]
)

+ P(2, 3, . . . , n−2)

]
.

Besides the form containing permutations above, a closed expression for all n has been

found in reference [47].

Although the KLT relations are often applied to pure-graviton and pure-gluon ampli-

tudes, their use is not limited to these scenarios. Any pair of consistent N=4 amplitudes

is related to an amplitude in N=8 supergravity and vice versa.

Given two states of the N=4 SYM multiplet, one can immediately determine which

type of particle has to appear at a certain position on the supergravity side by adding the

helicities and combining the indices, according to the tensor-product decomposition of the

Fock space,

[N=8] ↔ [N=4]L ⊗ [N=4]R . (2.132)

Remarkably, the opposite statement is true as well: given a certain operator, corresponding

to a particular state in N=8 supergravity, the helicity, global symmetry properties, and the

consistent action of supercharges in either of the theories are sufficient to unambiguously

determine the decomposition into N=4 SYM states [28] as listed in table 3 below. Therein

the particle labeling is the same as tables 1 and 2. Quantities with indices a, b, . . . correspond

to the first SU(4), while tilded quantities with indices r, s, . . . are in the second SU(4).
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B+ = g+ g̃+ B− = g− g̃−

F a+ = λa+ g̃+ F−
a = λ−a g̃

−

F r+ = g+ λ̃r+ F−
r = g− λ̃−r

Bab+ = φab g̃+ B−
ab = φab g̃

−

Bar+ = λa+ λ̃r+ B−
ar = −λ−a λ̃−r

Brs+ = g+ φ̃rs B−
rs = g− φ̃rs

F abc+ = εabcd λ−d g̃
+ F−

abc = −εabcd λ
d+ g̃−

F abr+ = φab λ̃r+ F−
abr = φab λ̃

−
r

F ars+ = λa+ φ̃rs F−
ars = λ−a φ̃rs

F rst+ = εrstu g+ λ̃−u F−
rst = −εrstu g

− λ̃u+

Xabcd = εabcd g− g̃+ Xabcd = εabcd g
+ g̃−

Xabcr = εabcd λ−d λ̃
r+ Xabcr = εabcd λ

d+ λ̃−r

Xabrs = φab φ̃rs Xabrs = φab φ̃rs

Xarst = εrstu λa+ λ̃−u Xarst = εrstu λ
−
a λ̃

u+

Xrstu = εrstu g+ g̃− Xrstu = εrstu g
− g̃+

Table 3: KLT decomposition of particles in N=8 supergravity

2.9 Conformal supergravity

A conformal theory for gravity [48, 49] can be constructed starting from the Weyl tensor

Cµνρσ = Rµνρσ − (gµ[ρRσ]ν − gν[ρRσ]µ) + 1
3Rgµ[ρgσ]ν (2.133)

which is the part of the Riemann tensor15 invariant under conformal transformations of the

metric

gµν → g′µν = Ω2gµν (2.134)

with Ω a smooth and strictly positive function. The Weyl tensor is completely traceless.

A conformally invariant action can be obtained by squaring the Weyl-tensor

SCSG =

∫
d4x

√−gCµνρσC
µνρσ

=

∫
d4x

√−g
(
RµνR

µν − 1

2
R2

)
, (2.135)

where the last line can be obtained by noting that the Gauss-Bonnet term

RµνρσR
µνρσ − 4RµνR

µν +R2 (2.136)

15Ricci scalar, Ricci tensor and the Riemman tensor have been defined around eq. (2.120).
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can be written as a total covariant derivative. The action eq. (2.135) does not exhibit a

dimensionful coupling constant, as is dictated by conformal invariance. Considering the

two-derivative nature of the Riemann tensor, it is obvious that the equations of motion

derived from the action eq. (2.135) contain four derivatives. This is a rather special feature,

whose consequences challenge the physical sensibility of the theory as will be shown below.

Expanding the action eq. (2.135) around the flat Minkowski metric gµν = ηµν +hµν and

fixing the diffeomorphism invariance, the equations of motion at linearized level read [50]

�
2h̄µν = 0 where h̄µν = hµν − 1

4h
γ
γ (2.137)

and determine the traceless part of hµν exclusively.

The general solution to an equation of the form �
2φ = 0 is

φ(x) =

∫
d4k (a(k) exp(ik · x) + b(k)A · x exp(ik · x)) + c.c., (2.138)

where A · k 6= 0 and c.c. denotes the complex conjugated expression. The part containing

exp(ikx) will be called a plane wave φp, while a solution proportional to A · x exp(ikx) will

be denoted as conformal wave φc. Spacetime translations on φp and φc act as [51]

(
P 0

∗ P

)(
φp

φc

)
, (2.139)

where P is the usual translation operator and ∗ an additional nonzero contribution. There-

fore φp and φc are neither eigenstates of the translation operator nor do they transform

independently

φp → φ′p,

φc → φ′c + φ′′p , (2.140)

and thus constitute a doublet. This implies that φp and φc can not be treated separately

without breaking translational invariance.

For the metric perturbation h̄µν eq. (2.137) can be solved starting from the ansatz

h̄µν = (aµν + bµνAρx
ρ) exp(ik · x) + c.c. (2.141)

with aµ
µ = bµµ = 0. Taking again the gauge freedom into account, one can show that h̄µν

describes six degrees of freedom: a masless spin-1 state containing two degrees of freedom

and a massless spin-2 doublet with four degrees of freedom [50].

Although quantization is a concept which is usually applied to a two-derivative theory

with a two-dimensional phase-space, one can still try to derive facts about the Hilbert-space

structure of a higher derivative theory by introducing an auxiliary field and reformulating

the theory as a pair of related two-derivative theories. The Lagrangian

L =
1

2
B�

2B (2.142)
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for a scalar field B results in an equation of motion of the form eq. (2.138) and therefore

describes a doublet. Introducing an auxiliary field A it can be rewritten as

L = −∂A · ∂B − 1

2
λ2A2 , (2.143)

where λ with [λ] = 1 ensures the canonical dimension for the field A. Upon use of the

equations of motion

�B = λ2A and �A = 0 (2.144)

one can eliminate A in order to restore eq. (2.142) up to a factor 1
λ2 .

Performing now the usual quantization procedure with canonical momenta

Πφ = ∂L/∂(∂tφ) , (2.145)

leads to [48]

[ΠA, A(x′)]|t=t′ = [−∂tA,A(x′)]|t=t′ = −iδ3(x− x′)

[ΠB , B(x′)]|t=t′ = [−∂tB,B(x′)]|t=t′ = −iδ3(x− x′) . (2.146)

Employing the Green function for the Laplace operator �∆(x − y) = δ4(x − y) and

eq. (2.143), one derives from the above commutators

[A(x), A(y)] = 0, [A(x), B(y)] = −i∆(x− y), [B(x), B(y)] = −iλ2∆̃(x− y) (2.147)

where �∆̃ = ∆.

Fixing the vector Aµ = (1, 0, 0, 0) (see 2.138) without loss of generality, the fields A and

B are at oscillator level given by

A(x) =

∫
d3k

(2π)3
√

2ωk
(ak exp(−ikx) + a†k exp(ikx))

B(x) =

∫
d3k

(2π)3
√

2ωk

{(
bk − λ2

(
1

4ω2
k

− it

2ωk

)
ak

)
exp(−ikx)

+

(
b†k − λ2

(
1

4ω2
k

+
it

2ωk

)
a†k

)
exp(−ikx)

}
, (2.148)

where ωk =

√
(~k)2. Here the dependence of the fields A and B is expressed in the fact

that the coefficients in the expansion of B contain the oscillators from A. Commutation

relations are given by

[ak, a
†
k′ ] = [bk, b

†
k′ ] = 0 and [ak, b

†
k′ ] = [bk, a

†
k′ ] = δ3(k − k′) . (2.149)

Constructing now the Fock-space, one defines the vacuum and the one-particle states as

ak|0〉 = bk|0〉 = 0, |k〉a = a†k|0〉 and |k〉b = b†k|0〉 . (2.150)

Employing the commutation relations eq. (2.149) one can show the norm of the states to

vanish a〈k|k′〉a = b〈k|k′〉b = 0 but the off-diagonal elements to yield

a〈k|k′〉b = δ3(k − k′) . (2.151)
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Considering the momentum operator

Pµ =

∫
d3k

(2π)3
kµ

(
a†kbk + b†kak + δµ0 λ

2

2ω2
k

a†kak

)
(2.152)

one can see the doublet structure already encountered in the classical solution eq. (2.138)

to carry over to the quantum theory: the states eq. (2.150) transform in the same manner

as the plane- and conformal wave part in eq. (2.140) above

Pµ|k〉a = kµ|k〉a

Pµ|k〉b = kµ|k〉b + δµ0 λ
2

2ω2
k

|k〉a . (2.153)

Besides of their unusual translational properties, states eq. (2.150) are not eigenstates of

the energy-momentum operator. With a linear transformation on |k〉a and |k〉b one could

cure this problem, but one of the new states would have negative norm-square then. States

showing the behavior described above are called dipole ghosts.

Ghost states with negative squared norm and mixing of physical states is a serious

problem for a theory: the unitarity principle is violated and therefore the physical inter-

pretation of any result calculated in the theory remains questionable. In references [52, 53]

those theories are discussed at great length without a definite conclusion.

When it comes to the explicit calculation of amplitudes, it is no problem to develop

Feynman rules. In order to do so, one has to fix the gauge, which is done preferably with a

higher-derivative gauge fixing term [54]. It is possible to find a gauge corresponding to the

well-known deDonder gauge in ordinary gravity. The resulting propagator resembles the

structure of the propagator in usual two-derivative gravity:

gravity ∼ ηµνηρσ + ηµσηνρ − ηµρηνσ

k2

conformal gravity ∼ ηµνηρσ + ηµσηνρ − 5 ηµρηνσ

k4
. (2.154)

Despite of the drawbacks of the non-supersymmetric theory, several candidates for a

maximal supersymmetric generalization of conformal gravity have been identified [49, 55,

56]. Linearized conformal supergravity is the theory constructed from the N=4 supersym-

metric generalization of the Weyl tensor eq. (2.133). However, this theory is not invariant

under the full N=4 superconformal group. In an attempt to cure this problem two ad-

ditional theories have been identified by applying superconformal transformations to the

linearized theory and adding correction terms iteratively:

• a “minimal” version of conformal supergravity interacting with N=4 super Yang Mills

with gauge group SU(2) × U(1)

• a “non-minimal” N=4 conformal supergravity.

While this iterative process has been completed for the minimal version, in non-minimal

conformal supergravity not all terms necessary for closure of the superconformal algebra

have been identified.
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In order to compare with states represented by vertex operators in twistor string the-

ory lateron, it is sufficient to limit the consideration to the linearized N=4 conformal

supergravity. The supersymmetric generalization of the Weyl tensor is a scalar superfield

W (xAA′

, θ̄A
a , θ

aA′

) satisfying the condition

εabcdDcA′DA′

e DB′

d DfB′W = εefghD̄
a
AD̄

gAD̄bBD̄h
BW (2.155)

where DaA′ and D̄a
A are the usual superspace derivatives given by

DaA′ =
∂

∂θaA′ + θ̄A
a ∂AA′ and D̄a

A =
∂

∂θ̄A
a

(2.156)

in anti-chiral coordinates. The condition for W to be chiral can then be expressed as

D̄A
a W = 0, which shows that W is independent of θ̄. Expanding the superfield W into its

fermionic coordinates yields

W (x, θ) = ϕ+ θaA′

ΛaA′ + (θ2)(ab)E(ab) + (θ2)
(A′B′)
[ab] T

[ab]
(A′B′) + (θ3)

(A′B′C′)
d (∂η)d(A′B′C′)

+ (θ3)A
′c

[ab]ξ
[ab]
A′c + (θ4)

a(A′B′)
b (∂V )b(A′B′)a + (θ4)(A

′B′C′D′)ΨA′B′C′D′ + (θ4)
[ab]
[cd]d

[cd]
[ab]

+ (θ5)A
′[ab]

c ∂AA′ ξ̄Ac
[ab] + (θ5)a(A′B′C′)(∂ρ)a(A′B′C′) + (θ6)(ab)∂µ∂

µĒ(ab)

+ (θ6)[ab](A′B′)∂
AA′

∂BB′

T̄
[ab]
(AB) + (θ7)aA′(∂µ∂µ)∂AA′

Λ̄a
A + (θ8)(∂µ∂

µ)2ϕ̄,

(2.157)

where Ψ is the self-dual (SD) part of the Weyl-tensor

Cαβγδ = ΨASD
(ABCD)εA′B′εC′D′ + ΨSD

(A′B′C′D′)εABεCD . (2.158)

Moreover, the condition eq. (2.155) implies several Bianchi-identities, which allow writing

components of the expansion in terms of the potentials η, V and ρ conveniently. In terms of

W and the anti-chiral superfield W the linearized action for N=4 conformal supergravity

reads

S =

∫
d4xd8θW 2 + c.c. (2.159)

which, upon performing the θ-integrations results in the component action

S =

∫
d4x

(
ϕ(∂µ∂µ)2ϕ̄+ ΛA′a(∂

µ∂µ)∂A′AΛ̄a
A +E(ab)∂µ∂

µĒ(ab)

+ T
[ab]
(A′B′)

∂A′A∂B′BT̄(AB)[ab] + ξ
[ab]
A′c∂

A′Aξ̄c
A[ab] + d

[ab]
[cd]
d
[cd]
[ab]

+(∂V )b(A′B′)a(∂V )
(A′B′)a
b + Ψ(A′B′C′D′)Ψ

(A′B′C′D′) + (∂η)a(A′B′C′)(∂ρ)
(A′B′C′)
a

)

+ c.c. . (2.160)

Repeating the analysis sketched for the metric perturbation h̄µν above, one can determine

the degrees of freedom for each of the fields or potentials in eq. (2.160). The field content

of linearized conformal supergravity is collected in table 416. Whenever the same helicity

occurs in a row twice, the corresponding particles constitute a dipole ghost.

16the field ρ can be expressed in terms of η̄ by ρµaA′ = σ
µ

AA′(∂µη̄A
νa − ∂ν η̄A

µa + 1
2
εµντκ∂τ η̄κA

a )
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Fields Helicity SU(4) representation

ϕ 0, 0 1

ΛA′

a −1
2 ,−1

2 ,
1
2 4

E(ab) 0 10

T
[ab]
(A′B′) −1,−1, 0 6

ξ
[ab]
A′c −1

2 20

ηaA′

µ −3
2 ,−3

2 ,−1
2 ,

3
2 4

V b
µa 1,−1 15

d
[cd]
[ab] aux. field 20

eA
′A

µ 2, 2, 1,−1,−2,−2 1

η̄A
µa

3
2 ,

3
2 ,

1
2 ,−3

2 4

ξ̄Ac
[ab]

1
2 20

T̄
[ab]
(AB) 1, 1, 0 6

Ē(ab) 0 10

Λ̄a
A

1
2 ,

1
2 ,−1

2 4

ϕ̄ 0, 0 1

Table 4: Helicities and SU(4) representations of states in N=4 conformal supergravity.
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3 Maximally supersymmetric field theories in different for-

mulations

3.1 String theory

String theory will be used in this work twofold: on the one hand side its twistor version will

be investigated in the context of supergravities in section 4, while the low-energy limit of

usual string theories will serve as a calculational tool for accessing otherwise unaccessible

amplitudes in maximally supersymmetric field theories in section 5. However, the basic

idea of string theory shall be discussed here in order to set the grounds for the introduction

of twistor string theory in subsection 3.2.2. In addition, the low-energy limit of type I and

type II string theory will be shown to be connected to N=4 SYM and N=8 supergravity

in subsection 3.1.3.

3.1.1 Actions and amplitudes

In order to discuss the concept of string theory [57, 58, 59, 60, 9] below, it is useful to start

with a pointlike particle. The action for a free point particle

S′
pp = −m

∫

C
ds = −m

∫
dτ

√
−gµν(X)

dXµ

dτ

dXν

dτ
(3.1)

is proportional to the length of its worldline, which in turn is parameterized by τ . In

eq. (3.1), gµν denotes the metric in the target space, the space in which the motion of the

particle takes place. By introducing a one-dimensional metric γττ (τ) on the worldline, the

point particle action can be rewritten as

Spp =
1

2

∫
dτ

(
ξ−1gµν(X)

dXµ

dτ

dXν

dτ
− ξm2

)
, (3.2)

where ξ =
√

−γττ (τ), and eq. (3.1) can be restored by use of the equation of motion. For

a point particle, X is a map from a one-dimensional parameter space into a d-dimensional

target space.

Promoting the zero-dimensional point particle to an one-dimensional object, a string,

the worldline is replaced by a two-dimensional parameter space Σ with coordinates (τ, σ),

which is called worldsheet:

In analogy to the point particle case, equations of motion for a string moving in the target

space can be obtained from minimizing the action, which is now proportional to the area

of the worldsheet. Introducing again a metric γ on the worldsheet, one can conveniently

write the action in conformal gauge [60] where γαβ = eφ(σ,τ)ηαβ and γ = det γαβ

SP = − 1

4πα′

∫

Σ
dτdσ

√−γγαβgµν(X)∂αX
µ∂βX

ν , (3.3)

which reduces to

SP = − 1

4πα′

∫

Σ
dτdσ

√−γγαβ∂αX
µ∂βXµ = − 1

2πα′

∫

Σ
d2z∂Xµ∂̄Xµ (3.4)
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τ

τ

σ

Figure 1: Worldline of a particle and worldsheet of an open string

for flat Minkowski target space. The second form is written in complex coordinates, which

will be used below: d2z = dzdz̄ = 2dτdσ, where z = τ + iσ and z̄ = τ − iσ [60]. Cor-

respondingly, derivatives are defined as ∂ = ∂z = 1
2(∂τ − i∂σ) and ∂̄ = ∂z̄ = 1

2(∂τ + i∂σ).

Being invariant under local diffeomorphisms, local Weyl-transformations of the metric γ

and global Poincaré spacetime transformations, the second invariance renders the theory a

conformal field theory [61, 62] on the worldsheet.

The parameter α′ in eq. (3.3) is the inverse tension of the string, has dimension of

(length)2 and is of the order of magnitude of squared Planck length:
√
α′ ∼ lPlanck =

1.6 × 10−35m.

Strings come in either open or closed form. The closed form is obtained by identifying

the endpoints of the string, thus the worldsheet swept out will be a cylinder. Accordingly,

if the endpoints of the string are distinct, the string is called open. While it is possible to

consider string theories with closed strings exclusively, open strings can always join their

endpoints to form a closed string. Speaking of an open string theory therefore refers to the

open subsector of a theory containing open and closed strings.

Amplitudes in string theories are calculated by inserting vertex operators into the world-

sheet, evaluating their operator product expansions in the corresponding conformal field

theory and integrating over all possible insertion points. For open-string tree amplitudes,

any worldsheet can be conformally transformed into a disk with the vertex operators being

inserted at the boundary. Correspondingly, closed string tree amplitudes can be calculated

by inserting vertex operators at the surface of a sphere:

While for a point-particle quantum field theory the vanishing of the vacuum expectation

value of a field 〈ψµ〉 = 0 is equivalent to the statement that the vacuum state ψµ
0 is a solution

to the classical equations of motion, the corresponding condition for a classical solution in

string theory is the vanishing of the vacuum expectation value for any vertex operator of a

physical state:

〈V µ〉 = 0. (3.5)

Worldsheet conformal invariance implies equation (3.5) at string tree level. Employing a
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V1

V2V3

V4

V1

V2

V3

V4

Figure 2: Tree-level amplitudes in open and closed string theories

similar argument, it is furthermore possible to see that a solution to string theory at the

classical level corresponds to a conformally invariant σ-model17.

Demanding local conformal worldsheet invariance corresponds to the local vanishing

of the trace of the energy momentum tensor. This condition translates into remarkable

equations in the target space: Einstein’s equation in the presence of source terms and

an antisymmetric tensor generalization of Maxwell’s equations arise as conditions for the

conformal invariance of the worldsheet theory [60].

While eq. (3.3) describes bosonic degrees of freedom on the target space exclusively, one

would like to incorporate fermions into the string framework. Besides of fixing the dimension

of the target space to d = 10, the introduction of fermionic fields avoids the appearance of

particles with a negative mass: tachyons. One possible way to generalize eq. (3.3) is the

introduction of ten-dimensional18 Majorana-Weyl spinors θA
a with supersymmetry index

a ∈ {1, . . . ,N} and spinor index A

S = − 1

2πα′

∫

Σ
dτdσ

√−γγαβgµν∂αΠµ∂βΠν + extra terms (3.6)

where

Πµ
a = ∂αΠµ − iθ̄aΓµ∂αθ

a with θ̄ = θ†Γ0 (3.7)

and Γ0 · · ·Γ9 are the ten-dimensional analogue of the γ-matrix algebra eq. (2.12). The extra

terms in eq. (3.6) are combinations of the Majorana-Weyl spinors θ and the field X and

are required ensure the so-called κ-symmetry of the action. This hidden symmetry, whose

algebra closes only after employing the equations of motion, is a necessary consistency

requirement. An elaborate discussion of the derivation and the precise form of the extra

terms can be found in [58].

The requirement of κ-symmetry of eq. (3.6) has an additional consequence: only N =

0, 1, 2 spacetime supersymmetries are allowed. Accordingly, variables θ1 and θ2 appropriate

17A proof and further treatment can be found in chapter 3.4.3 of [58].
18In ten dimensions it is possible to impose the Majorana and Weyl condition on a spinor simultaneously.
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for N=2 supersymmetry are considered, where the theories with N=0, 1 can be obtained

by setting one or both of them to zero.

Majorana-Weyl spinors in ten dimensions must be assigned a definite handedness. The

relative choice of handedness for θ1 and θ2 distinguishes between different types of string

theories.

• Type I string theory: For open strings, the spinors θ1 and θ2 have to exhibit the

same handedness. In addition, open string boundary conditions reduce the expected

N=2 worldsheet supersymmetry to N=1, which explains the name type I string the-

ory. The theory is allowed to have a Yang-Mills gauge group, which in ten dimensions

is fixed to be SO(32) by consistency conditions at the quantum level. Type I string

theory is a theory of open (and closed) strings allowing orientable as well as unori-

entable worldsheets.

• Type II closed string theories: Considering closed strings, either choice of relative

handedness is possible. For opposite handedness of θ1 and θ2 the resulting theory

involves oriented strings and exhibits N=2 spacetime supersymmetry. This nonchiral

theory is called type IIA theory. Requiring θ1 and θ2 to have equal handedness leads to

the oriented chiral type IIB string theory, which is N=2 target-space supersymmetric

as well.

3.1.2 KLT relations

Tree-level amplitudes in closed and open string theories are linked by the Kawai-Lewellen-

Tye (KLT) relations [63], which arise from the fact that any closed-string vertex operator

can be represented as a product of two open-string vertex operators,

V closed(zi, z̄i) = V open
left (zi)V

open
right (z̄i) . (3.8)

As mentioned above, insertion points zi, z̄i of vertex operators are integrated over a two-

sphere in the closed-string amplitude, while in the open-string case the real zi are integrated

over the boundary of a disk. Any open string amplitude can be written as a multiple integral,

whose integrand factorizes into two terms corresponding to the left and right sector and

depending on z and z̄ respectively. Performing the integrals will convolute the two sectors,

however the action of the convolution can be made explicit as has been shown by KLT in

ref. [63]. In particular, any closed string amplitude can be written as

Mn
closed =

∑

P,P ′

An
open(P )An

open(P ′)eiπF (P,P ′) , (3.9)

where P and P ′ are all possible cyclic permutations of the set {1 . . . n}. On closer inspection

it turns out that the phase factor eiπF (P,P ′) is completely independent of the choice of string

theories for the amplitudes: it will serve for combining two type I open string amplitudes

into a closed type II amplitude as well as for determining heterotic string amplitudes by

combining a bosonic theory with a supersymmetric one.
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In addition, it can be shown that the number of permutations to sum over can be largely

reduced by carefully examining branch cuts and contour deformations of the phase factor

in complex plane and taking the SL(2) symmetry of the worldsheets into account. Doing

so, the final result for four-, five- and six-point amplitudes reads

M4(1, 2, 3, 4) =
−i
α′π

sin(α′πs12)A4(1, 2, 3, 4)A4(1, 2, 4, 3) , (3.10)

M5(1, 2, 3, 4, 5) =
i

α′2π2
sin(α′πs12) sin(α′πs34)A5(1, 2, 3, 4, 5)A5(2, 1, 4, 3, 5)

+ P(2, 3) , (3.11)

M6(1, 2, 3, 4, 5, 6) =
−i
α′3π3

sin(α′πs12) sin(α′πs45)A6(1, 2, 3, 4, 5, 6)

×
[
sin(α′πs35)A6(2, 1, 5, 3, 4, 6)

+ sin(α′π(s34 + s35))A6(2, 1, 5, 4, 3, 6)
]

+ P(2, 3, 4) . (3.12)

Formulae for higher-point amplitudes can be derived straightforwardly [63].

3.1.3 Low-energy effective actions of type I and type II string theories

The worldsheet actions eq. (3.3) and eq. (3.6) combined with appropriate boundary condi-

tions contain the complete information about a free string theory. However, starting from

these actions the mass spectrum of the theory can be shown to exhibit besides of massless

modes an infinite number of massive modes with m2 = l
α′ , l = 1, 2, . . .. The mass differ-

ence between massless and massive particles in string theory is related to the to the Planck

length via

△m2 ∼ 1

α′
∼ 1

l2Planck

. (3.13)

Therefore, the first massive strings are expected to have a mass of order of the Planck mass

mPlanck = 1.22086 × 1019 GeV
c2

. This mass being several orders of magnitude larger than the

masses encountered in the standard model, it is reasonable to concentrate on the massless

sector of string theory.

For this sector it is possible to find a target space action, which is constructed such as to

reproduce the amplitudes calculated in the worldsheet formalism. This low-energy effective

action is a perturbative expansion in two parameters. While the string coupling constant gs

does play a role for string loop amplitudes not considered here, the expansion in the inverse

tension α′ is the key parameter in the relation between string theories and maximally

supersymmetric field theories. While low-energy effective actions for string theories are

well known to O(α′), the knowledge is limited to special terms beyond leading order.

In the limit α′ → 0 the tension of the string becomes infinite, which prohibits any

finite energy vibrations of the string. Without excited modes however, one will recover

the solution to the equations of motion of a pointlike particle. Thus the limit α′ → 0

corresponds to a point particle description.
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While low-energy effective actions in ten dimensions are constructed by finding terms

reproducing the known amplitude results, the process is more subtle for the desired low-

energy effective action in four dimensions. Since in a trivial torus compactification from

ten to four dimensions the collective19 radius parameter r has to tend to zero in order to

decouple motions in the internal six dimensions from the desired spacetime description,

there are now two competing expansions around zero values: the expansion in small inverse

string tension α′ and the expansion in the compactification radius r.

In reference [64] this simultaneous limit has been studied. While it had already been

shown that type I and type II string theories approach supersymmetrical Yang-Mills theory

and extended supergravity in ten dimensions in the limit α′ → 0 respectively, a careful treat-

ment of the additional r → 0 limit reveals that the leading terms in the four-dimensional

low-energy effective actions for compactified type I and type II string theories coincide with

N=4 SYM and N=8 supergravity theory in four dimensions. While in N=4 SYM theory

the leading string correction at O(α′2) is the well-known F 4-term [65, 66, 67], the leading

correction to the N=8 supergravity action occurs at O(α′3) and is the famous R4 term [68]

introduced in eq. (5.6) in subsection 5.1 below.

Of course, one of the most obvious question is: which of the properties and symmetries

of supersymmetric field theories and string theories are combined in the low-energy effective

actions? Although there are many results in this field of ongoing research, there is one fact

which will be made use of below. Stieberger and Taylor have explicitly proven for open string

theory on the disk that the form of the supersymmetric Ward identities (see subsection 2.5)

to all orders in α′ is identical to that in the corresponding four-dimensional field-theoretical

limit [69]. Thus KLT relations are valid order by order in α′ for string-corrected amplitudes.

3.2 Twistor space and twistor string theory

In this subsection, an introduction to twistor space and to twistor string theory is pro-

vided. After starting with the geometrical foundations of the (super-)twistor construction

in subsection 3.2.1, twistor string theory will be discussed in subsection 3.2.2. Limiting

the consideration to the foundations in the current subsection, the status of twistor string

theory and recent developments will be elaborated on in subsection 4.1 below.

3.2.1 Twistor space, geometrical twistor construction

Twistor space is a concept to replace spacetime with a more fundamental structure. While

spacetime locality is obscured, the twistor description of a theory is in particular adequate

for theories exhibiting conformal symmetry, as for example N=4 SYM theory. In the same

manner as spinors transform in representations of the Lorentz group, twistors transform in

representations of the conformal group.

The special nature of transformations of objects from spacetime into twistor space

leads to a remarkable feature: spacetime fields describing particles, which in spacetime

19Without loss of generality one can assume all compact dimensions to be curled up with the same radius.
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are constrained by their respective equations of motion, can be treated as objects free of

constraints in twistor space, as will be explained in detail below20.

In order to rigorously define the twistor correspondence, it is necessary to work with a

complexified spacetime and furthermore introduce the notion of flag manifolds.

Complexified spacetime The complexified four-dimensional Minkowski spacetime CM
is defined to be C4 with the metric η = diag(+,−,−,−). In analogy to the real situa-

tion considered in subsection 2.2, the complex Lorentz group SO(1, 3,C) = SO(4,C) is

isomorphic to SL(2,C) × SL(2,C), which again allows the decomposition eq. (2.22).

One additional structure will prove useful below: two-dimensional null-planes in com-

plexified Minkowski space. A 2-plane in spacetime is null, if ηµνv
µwν = 0 for all tangent

vectors v,w. In order to further characterize the null-planes, one can associate to each

null-plane a spacetime bivector π = v∧w : πµν = v[µwν], which determines the orthogonal

complement to the tangent space of the null-plane. The bivector in turn can be decomposed

into a self-dual (α-plane) and an anti-self-dual part (β-plane) by means of eq. (2.22)

πABA′B′

= εABρA′

ρB′

+ εA
′B′

σAσB . (3.14)

Alternatively, an α-plane can be described in spacetime as the solution to

σA = xAA′

ρA′ (3.15)

for two fixed homogeneous coordinates ρ, σ. Solving (3.15) yields

xAA′

= xAA′

0 + σAρA′

, (3.16)

which is the definition of an α-plane, as can be seen by orthogonality with the self-dual

part of the bivector π:

π
(SD)
ABA′B′σ

AρA′

= εABρA′ρB′σAρA′

= 0. (3.17)

Flag manifolds A flag manifold of the n-dimensional vector space V is defined as

Fd1···dm(V ) := {(S1, . . . , Sm)|Si ⊂ V,dimSi = di, S1 ⊂ S2 ⊂ · · · ⊂ Sm}, (3.18)

where {d1, . . . , dm} is a sequence of positive integers satisfying 1 ≤ d1 < · · · < dm ≤ n and

the Si are subspaces of V . Common examples are F1(Cn) = CPn−1 and the Grassmannian

Fk(Cn) = Gk,n(C). In terms of homogeneous spaces, flag manifolds of Cn can equally well

be defined by

Fd1···dm(Cn) :=
U(n)

U(d1) × U(d2 − d1) × · · · × U(dm − dm−1) × U(n− dm)
, (3.19)

which rather straightforwardly leads to the formula for their dimension

dimC Fd1···dm(Cn) = d1(n− d1) + (d2 − d1)(n− d2) + · · · + (dm − dm−1)(n− dm) . (3.20)

The relation between twistor space and spacetime can be defined by a double fibration

involving certain flag manifolds of the twistor space.

20This introduction to twistor space and the geometrical twistor construction partially follows refs. [70, 71].

The foundations of twistor theory have been laid in ref. [72].
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Twistor space and double fibration Let T = C4 be a four-dimensional complex

vector space called twistor space. The twistor correspondence can then be expressed in the

following double fibration

F12(T)

F1(T) = P̃T F2(T) = C̃Mµ1 µ2

(3.21)

where F12(T) is simultaneously fibered over F1(T) and F2(T) with corresponding projec-

tions µi(S1, S2) = Si for i = 1, 2.

The three-dimensional complex space F1(T) is called projective twistor space and is the

set of one-dimensional subspaces of T = C4, which is CP 3 =: P̃T. The space F2(T) =

G2,4(C) =: C̃M is referred to as compactified complexified four-dimensional spacetime. One

can show the space of two-dimensional subspaces of T, G2,4(C), to be isomorphic to C̃M
by identifying both spaces with the Klein quadric in CP 5:C̃M ∼= G2,4(C) ∼= {Xαβ |X [αβXγδ] = 0} ⊂ CP 5, (3.22)

where {Xαβ = X [αβ]|α, β = 0, 1, 2, 3} are homogeneous coordinates on CP 5. Finally, the

space F12(T) is referred to as correspondence space. Its local structure can be revealed

by fixing a two-dimensional subspace S0
2 of T and considering the corresponding subspace

f12 ∈ F12 over S0
2

f12 = {S1 ∈ T : S1 ∈ S0
2} . (3.23)

Since S0
2
∼= C2, f12 is isomorphic to the set of one-dimensional subspaces of C2, which in

turn is CP 1. Remembering the set of all subspaces S0
2 to be given by G2,4(C), one finds

locally:

F12 = G2,4 ×CP 1 . (3.24)

Local coordinates and twistor correspondence Given the local structure (3.24) of

F12, one can choose x = xAA′

, A,A′ = 1, 2 as coordinates for G2,4 and π = [πA′ ] for CP 1,

which results in the coordinate mapping

(x, [π]) 7→
([

xAA′

πA′

πA′

]
,

[
xAA′

1l2

])
=
(
S

(x,[π])
1 , S

(x,[π])
2

)
∈ F12 . (3.25)

Using the local coordinate representation, one can rewrite (3.21) as

(x, [π]) ∈ F12(T)

(x · π, π) ∈ P̃T x ∈ C̃Mµ1 µ2

. (3.26)
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The relation between P̃T and C̃M is called twistor correspondence. Employing the local

coordinates defined above, the correspondence can be expressed as the incidence relation

ωA = xAA′

πA′ (3.27)

where Zα = (ωA, πA′) with α = 0, 1, 2, 3 are homogeneous coordinates for P̃T. Holding a

spacetime point x fixed in (3.27) and allowing the twistor coordinates to vary, will result in

µ1(µ
−1
2 (x)) ∼= CP 1. If one considers the coordinates Zα as non homogeneous, a point x inC̃M can be represented as two-dimensional subspace of the (non-projective) twistor space.

This subspace can be represented as a twistor-space bivector21 Xαβ = Z [αY β] satisfying

the simplicity condition

X [αβXγδ] = 0 . (3.28)

The other way around, interpreting the incidence relation for fixed Zα, defines an α-plane

(3.14) in C̃M: µ2(µ
−1
1 (Z)) ∼= CP 2. So one has the following correspondence between points

and subsets of spacetime and twistor space:CP 1 ⊂ P̃T ↔ point in C̃M
point in P̃T ↔ CP 2 ∈ C̃M . (3.29)

Compact spacetime and infinity twistor In the paragraphs above, the twistor corre-

spondence has been established for compactified four-dimensional complexified spacetimeC̃M, which is invariant under the full conformal group and can be obtained from the usual

Poincaré-invariant spacetime CM by adding a point at infinityC̃M = CM ∪∞ . (3.30)

What is the analogue of the point at infinity in projective twistor space P̃T? The incidence

relation is degenerated for πA′ = 0, because for any x ∈ CM eq. (3.27) would lead to

ωA = 0. So the subspace corresponding to ∞ ∈ C̃M is the CP 1 ⊂ P̃T defined by πA′ = 0.

Accordingly, one can identify the projective twistor space of CM with a subset of CP 3:CM ↔ PT ∼= CP 3 −CP 1 . (3.31)

In order to remain in a compact twistor setup and simultaneously work with a non-compact

spacetime, one can mark any point i ∈ C̃M to be the point at infinity. The subgroup of

the conformal group SL(4,C) which leaves the point i invariant is the Poincaré group.

By marking this point and requiring its invariance one implicitly sets a length scale for

spacetime, which is chosen to be unity. Again, this point i can be represented as a bivector

Iαβ ∈ P̃T satisfying the simplicity condition (3.28). This bivector is called the infinity

twistor.

21Those bivectors are exactly the homogeneous coordinates of CP 5 which have been introduced after

eq. (3.22).
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Identifying the complex projective line πA′ = 0 with the point ∞ ∈ C̃M fixes the explicit

form of the infinity twistor:

Iαβ = εAB ↔ Iαβ = εA
′B′

. (3.32)

Alternatively, there is also a representation of the infinity twistor as a 2-form τ on T:

τ =
1

2
IαβdZα ∧ dZβ, (3.33)

where the dual of the infinity twistor is defined to be Iαβ = 1
2εαβγδI

γδ . It is furthermore

useful to define a one-form k = IαβZ
αdZβ = εA

′B′

πA′ ∧dπB′ from which τ can be obtained

via τ = 1
2dk. The one-form k will be one major ingredient for the modified version of a

twistor string theory discussed in section 4 below.

Real spacetimes Although the discussion of the twistor construction in the last para-

graphs has been performed for complexified Minkowski spacetime, the final goal is to cal-

culate physical objects in real spacetimes. In particular, real slices are defined as the set of

fixed points of an antiholomorphic involution τ : C̃M→ C̃M, where the specific choice of

τ determines the resulting spacetime signature [70, 71]. Choosing appropriate coordinates,

this involution can be expressed as complex conjugation. On each of those real slices the

group SL(4,C) reduces to one of its real forms. The involution τ on CM induces a map on

twistor space. For Lorentzian (+,−,−,−) and split (+,+,−,−) signature real spacetimes,

the involutions and maps will be characterized below.

• Lorentzian signature The involution resulting in a real slice ofCM with Lorentzian

signature is given by hermitian conjugation:

τL : C̃M→ C̃M, σ(x) = x† , (3.34)

where suitable local coordinates are defined as22

xAA′

= σAA′

µ xµ with σAA′

µ = (σ0, σ3, σ1, σ2). (3.35)

The real subgroup of SL(4,C) preserving the Lorentzian slice is the real conformal

group SU(2, 2) = Spin(2, 4). In order to define the corresponding induced map τL

on twistor space, one has to take care of an additional subtlety: the involution τL

switches the role of α-planes and β-planes in twistor space, because the indices A and

A′ are interchanged, which in turn carries over to a change in indices of the bivector

defining the null planes. The space of β-planes in C̃M is the dual twistor space T∗.

Furthermore, SU(2, 2) preserves a Hermitian metric Σαβ̄ on T (and P̃T), which in

turn defines a map from the complex conjugated twistor space T̄ to the dual twistor

space T∗:

σΣ : T̄→ T∗ with Z̄ ᾱ = (Zα)∗ → Σαβ̄Z̄
β̄ . (3.36)

22see eq. (2.14) for the definition for Pauli matrices
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Employing the map σΣ one can identify any complex conjugated twistor with its dual

twistor. Thus one finds the action of the map τ on twistor space to be

τL : P̃T→ P̃T∗
, τL : Zα → Z̄α = Σαβ̄Z̄

β̄. (3.37)

• Split signature The real slice with split signature is just the subspace of CM where

xAA′

is real. So the involution τS is given by complex conjugation

τS : C̃M→ C̃M, σ(x) = x∗ , (3.38)

where again xAA′

= σAA′

µ xµ but now appropriate local coordinates are obtained from

σAA′

µ = (σ0, iσ3, σ1, σ2). The subgroup preserving the Kleinian metric is SL(4,R) =

Spin(3, 3).

In split signature the ordinary complex conjugation on CM is carries over to ordinary

component-by-component complex conjugation on twistor space

τS : P̃T→ P̃T τS : Zα → (Zα)∗ . (3.39)

Hence the real slice of C̃M corresponds to TR = R4 ∈ T and therefore P̃TR =R̃P 3 ∈ P̃T.

Penrose-Ward transformation The correspondence eq. (3.29) above between points

and subsets can be extended to more advanced geometrical analytical objects, such as

holomorphic vector bundles and homology classes.

Starting from an object in twistor space, the pull-back of this object onto the correspon-

dence space must be constant along the fiber F12 → P̃T. Projected onto spacetime, this

constancy condition can be expressed in form of a partial differential equation. In other

words: objects constrained by (particular) partial differential equations in spacetime can

be studied as free objects in twistor space.

Identifying the constrained spacetime objects with fields describing particles and obey-

ing certain field equations makes clear where the power of the twistor construction comes

from: the corresponding free objects in twistor space in turn are elements of certain coho-

mology groups, for which correlators can be defined. Hereby the field equations are taken

into account already by the formalism itself.

Explicitly, the Penrose-Ward transformation [70] relates spacetime fields φ of helicity

h defined on a suitable region U ⊂ C̃M and satisfying the massless field equation with

elements of the cohomology group H1(Û , O(2h − 2)), where Û = µ−1
2 (µ1(U)) ⊂ P̃T. An

element of H1(Û , O(2h − 2)) takes values in the bundle O(2h − 2) and is therefore homo-

geneous of degree 2h − 2 in Zα ∈ P̃T.

U ′

Û ⊂ P̃T U ⊂ C̃Mµ1 µ2

(3.40)
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Any region Û ⊂ P̃T can be covered by two open subsets V1 and V2 (for example V1 = {π1′ =

0} and V2 = {π2′ = 0}). Employing this covering, any element of the sheaf cohomology

group H1(Û , O(2h−2)) can be represented as a holomorphic function f(Zα) of degree 2h−2

defined on the region V1 ∩ V2. Being a Čech cocycle, f(Zα) is subject to the coboundary

transformation

f → f ′ = f + f1 − f2 , (3.41)

where f1 and f2 are holomorphic functions of degree 2h− 2 on V1 and V2 respectively.

The first step in performing the transformation is to start from a function f(xAA′

πA′ , πA′)

on Û ⊂ P̃T and to pull it back to a holomorphic function g(xa, πA′) of degree 2h − 2 on

µ−1
1 (V1) ∩ µ−1

1 (V2) ⊂ U ′. The second step consists in the integration of πA′ over a suitable

circle Γ in V1 ∩ V2 ∩ {ωA = xAA′

πA′}, where the incidence relation is taken care of by

the choice of the contour [73]. The integration measure on the CP 1 to integrate over is

△π = πA′dπA′

. However, since one has to chose either V1 or V2 as a coordinate chart, the

integration measure can be taken to be △π = π1′dπ2′ on V2.

One additional condition has to be taken care of: in order for the result to be indepen-

dent of continuous deformations of the contour Γ, the exterior derivative of the integrand

has to vanish, which is equivalent to requiring the integrand to be of homogeneity degree

0. Therefore a suitable number of weighting factors πA′ or ∂
∂ωA

have to be adjoined in

order to raise or lower the degree respectively. This particular choice of factors for raising

and lowering the degree of homogeneity is implied by using πA′ as local coordinates for the

fiber CP 1, which in turn dictates the form of the incidence relation eq. (3.27). Choosing ωA

instead of πA′ as a factor to raise the degree of homogeneity would spoil Poincaré invariance

due to the position dependence of ω. Accordingly, the incidence relation singles out ∂
∂ωA

as translational invariant object.

For h ≤ 0 the Penrose-Ward transformation is

φ(A′
1...A′

n)(x
b) =

∫

Γ
πA′

1
· · · πA′

n
g(xb, πB′)△π , (3.42)

while for positive helicity

φ(A1...An)(x
b) =

∫

Γ

∂

∂ωA1
· · · ∂

∂ωAn
g(xb, πB′)△π . (3.43)

As already mentioned above, the spacetime fields φ satisfy massless field equations,

∇AA′

φ(A′
1...A′

n) = 0, ∇AA′

φ(A1...An) = 0 and �φ = 0 (3.44)

as can be seen from Eqs. (3.42) and (3.43) by performing the differentiation under the

integral sign and employing the consistency condition of the pull-back f → g:

∇AA′g = πA′

∂

∂ωA
f . (3.45)

The twistor-analogue of a wavefunction for a scalar particle has to be a holomorphic

function of degree −2 representing a Čech-cocycle on twistor space, whose Penrose-Ward

transformation is the usual plane wave solution for the massless field equation in spacetime

φ(x) = exp(ixapa) . (3.46)
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A consistent choice for the twistor-space wave function reads

φ(Z) =

∫
dk

k

2∏

A′=1

δ(kπA′ − pA′

) exp(ikωApA) , (3.47)

where pA and pA′

are momentum spinors23 defined in eq. (2.22). The variable k to be

integrated over takes the role of the GL(1)-weight ensuring the projective nature of PT.

If an appropriate δ-function ensuring the proportionality of pA′

and πA′

is present as in

eq. (3.47), a possible choice of k is

k =
( p
π

)
=

(
pξ

πξ

)
=

(
pA′ξA′

πB′ξB′

)
, (3.48)

where ξ is a reference spinor satisfying ξ · π 6= 0. One can perform the k-integration and

thereby remove one of the δ-functions to obtain another convenient form of the twistor-space

wavefunction:

φ(Z) =
( p
π

)
δ(πp) exp

(
iωp

( p
π

))
. (3.49)

A couple of identities involving the weighting factor
( p

π

)
will prove useful,

( p
π

)
δ(πp) =

(
p1′

π1′

)
δ(πp) =

(
p2′

π2′

)
δ(πp) ,

πB′

( p
π

)
δ(πp) = pB′δ(πp) pB′

(
π

p

)
δ(πp) = πB′δ(πp) , (3.50)

in showing that eq. (3.49) indeed transforms into eq. (3.45),

φ(Z) =

∫

ωA=xAA′πA′

dπ2′π1′

( p
π

)
exp

(
i ωp

( p
π

))
δ(πp)

=

∫

ωA=xAA′πA′

dπ2′ exp
(
i ωp

( p
π

))
δ

(
π2′ − π1′

p2′

p1′

)

=

∫

ωA=xAA′πA′

dπ2′ exp
(
i xCC′

pCπC′

( p
π

))
δ

(
π2′ − π1′

p2′

p1′

)

=exp(i xCC′

pCpC′) = exp(i xapa). (3.51)

Supertwistor space In order to obtain a supersymmetric extension of twistor space,

one can accompany the spacetime coordinates xAA′

by anticommuting spacetime spinors

θA
a , θ̃

aA′

, a = {1, . . .N}, which transform in an N -dimensional representation of an R-

symmetry group. While this group is SU(N ) for Lorentzian signature, it will be GL(N ,C)

or SL(N ,C) for split signature.

The complexified superconformal group SL(4|N ,C), which is an extended version of

SL(4,C), is naturally realized on C4|N with coordinates ZI = (Zα, ψa) = (ωA, πA′ , ψa).

23Although momentum spinors are usually denotet by greek letters, here and in the twistor-related liter-

ature pA and pA′

are used in order to avoid confusion with the common choice of twistor variables π, ω.
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The supertwistor space T[N ] is the subset of the supersymmetrically extended complexified

spacetime, on which Zα 6= 0: T[N ] = C4|N −C0|N . (3.52)

Accordingly, one can define the projective supertwistor space as equivalence class under

complex scalings P̃T[N ] = CP 3|N = ZI ∼ λZI |ZI ∈ T[N ], λ ∈ C× . (3.53)

In order to consider double fibrations involving flag manifolds of the supertwistor space,

the definition of flag manifolds has to be extended.

A flag supermanifold over the vector space Cm|n is defined as

Fd1···dk
(Cm|n) := {(S1, . . . , Sk)|Si ⊂ Cm|n, rankSi = di = pi|qi, S1 ⊂ S2 ⊂ · · · ⊂ Sk} .

(3.54)

In analogy to the purely even situation eq. (3.19), an equivalent definition in terms of a

quotient of groups U(m|n) exists.

Contrary to the situation in the non supersymmetric case there are now several possibil-

ities to choose fibrations over T[N ] corresponding to anti-chiral, chiral and full Minkowski-

superspace respectively. Leading to different incidence relations, the resulting twistor corre-

spondences will be distinct as well. Only the compactified anti-chiral Minkowski superspaceC̃M−

[N ] will be used below, so the following considerations will be limited to this case. The

correspondence between projective supertwistor space and chiral Minkowski superspace can

be depicted as

F1|0,2|0(T[N ])

F1|0(T[N ]) = P̃T[N ] F2|0(T[N ]) = C̃M−

[N ] .

µ1 µ2

(3.55)

Anti-chiral Minkowski superspace with coordinates (xAA′

, θaA′

) can be defined as the fibra-

tion of CP 1|0 over P̃T[N ] employing the incidence relation

(ωA, πA′ , ψa) = (xAA′

πA′ , πA′ , θaA′

πA′) . (3.56)

What is the analogue of the infinity twistor eq. (3.32) in supertwistorspace? In order

to find the supertwistor space corresponding to the uncompactified anti-chiral Minkowski

space CM−
[N ], one has to again fix the infinity twistor in PT[N ]. The infinity twistor

corresponds to a superline CP 1|N and one can choose coordinates such that

I[N ] = {πA′ = 0}. (3.57)

Considering now the incidence relation eq. (3.56), one can indeed see that this choice is

correct: by choosing πA′ = 0, the coordinates xAA′

and θaA′

in anti-chiral Minkowski
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superspace have to take infinite values for fixed finite nonzero values of ωA and ψa. As

eq. (3.57) is a condition on πA′ only, one can choose the same form for the infinity twistor

as in the non supersymmetric case: Iαβ = εAB , Iαβ = εA
′B′

(cf. eq. (3.32)).

In parallel to the superwavefunction eq. (2.80) one can equally well define a superwave-

function on supertwistor space

φ(Z) =

∫
dk

k

2∏

A′=1

δ(kπA′ − pA′

) exp(ikωApA)u(kψ), (3.58)

where the expansion in fermionic coordinates is given by

uφ(kψ) = φ0 + kφ1aψ
a + k2

2 φ2abψ
aψb + k3

3! φ3abcψ
aψbψc + k4

4! φ4abcdψ
aψbψcψd. (3.59)

Here k is the factor of GL(1,R)-weight −1 introduced in (3.48) which keeps φ1a . . . φ4abcd

weightless.

3.2.2 Twistor string theory

The original proposal for a twistor string theory by Witten [51] used a topological B-model

with target spaceCP 3|4, which is related to four-dimensional spacetime by Penrose’s twistor

construction [72] described in subsection 3.2.1. In this context, open string states can be

identified with gauge fields in spacetime and closed strings correspond to conformal su-

pergravity. The theory describes a duality between the perturbative expansion of N=4

super-Yang-Mills and the D-instanton expansion of string theory. As a consequence, am-

plitudes localize on holomorphically embedded algebraic curves in twistor space.

An alternative string theory in twistor space was formulated by Berkovits [74] shortly

after, in which both gauge theory and conformal supergravity states come from open string

vertex operators. It is the Berkovits formulation of twistor string theory which is introduced

below.

Open twistor string theory is a theory of maps from a worldsheet Σ onto a supertwistor

space with coordinates ZI = (ωA, πA′ , ψa), Z̄I defined in the previous paragraph. Two

different but equivalent formulations are available for the open string theory. In the first

formulation, which will be used later on, the worldsheet Σ is endowed with Euclidean

signature. Employing a twistor correspondence which results in anti-chiral superspace as

introduced in subsection 3.2.1, this implies a complex target space CP 3|4, where ZI is the

complex conjugate of Z̄I . This is the setup used in references [51, 74, 75, 73]. Alternatively

one can consider a worldsheet with Lorentzian signature. In this scenario ZI and Z̄I are

real independent coordinates, such that the target space will be RP 3|4 ×RP 3|4.

The worldsheet action for open twistor string theory is given by

S =

∫
d2z

(
YI ∂̄Z

I + ȲI∂Z̄
I + ĀJ +AJ̄

)
+ SC , (3.60)

where Z and Z̄ have conformal dimensions (0, 0), and Y , Ȳ are their conjugate variables

with conformal dimensions (1, 0) and (0, 1) respectively. Coupling to currents

J = YIZ
I , J̄ = ȲI Z̄

I , (3.61)
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the worldsheet gauge fields A and Ā ensure that the theory is defined on projective super-

twistor space CP 3|4. Consequently, the action (3.60) exhibits a local GL(1,C)-symmetry:

ZI → gZI , YI → g−1YI , Z̄I → ḡZ̄I , ȲI → ḡ−1ȲI , (3.62)

Ā→ Ā− g−1∂̄g, A→ A− ḡ−1∂ḡ. (3.63)

The last part of the action, SC , denotes a conformal field theory with central charge

cc = 28, which is assumed to include a current algebra of some gauge group G. This

additional system is required to cancel the conformal anomaly of the worldsheet theory as

will be shown below.

The equations of motion originating in (3.60) for the fields ZI and YI

(∂̄ + Ā)ZI = (∂ +A)ZI = 0,

(∂̄ − Ā)YI = (∂ +A)YI = 0 (3.64)

are accompanied by constraints from the Lagrange multipliers A and Ā

J̄ = 0 J = 0 (3.65)

and the condition for the endpoints of the open string

nYIδZ
I + n̄ȲIδZ

I = 0 . (3.66)

Equation (3.66) can be solved by

Z̄ = UZ, Y n = −U−1Ȳ n̄ , (3.67)

where U = e2iα for some function α varying over the boundary and being furthermore

continuous up to multiples of π. Furthermore |U | = 1 on the boundary since ZI and Z̄I

are complex conjugated. Using the gauge freedom to set the gauge fields A and Ā to zero,

forces the information about the gauge structure of the theory to reside in the boundary

condition (3.66) or in the transition functions for different coordinate patches in the case of

a nontrivial worldsheet topology. Some topologies including the annulus are studied in [75],

while the implications of the boundary for tree amplitudes will be discussed in subsection

3.2.5 below.

The boundary condition (3.66), restricts the open string to live on a subspace RP 3|4,

with isometry group SL(4|4,R) instead of SL(4|4,C). Therefore, open string operators can

be expressed in terms of Z, Y and a set of variables originating from SC exclusively. Ad-

ditionally, the scaling symmetry group is broken into GL(1,R) by the boundary condition.

One further consequence of the target space being RP 3|4, is the fact that the open string

theory corresponds to a spacetime theory defined in Kleinian (split) signature (+ + −−).

The following amplitude calculations assume that the analytical continuation to Lorentzian

signature exists and is well-defined.

Generators for the Virasoro and GL(1,R)-symmetry on the boundary are

T = YI∂Z
I + TC , J = YIZ

I , (3.68)
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where TC is the stress tensor for the current algebra. Quantization produces the well-known

(b, c) ghost system of conformal weight (2,−1) in combination with ghosts (u, v) of weight

(1, 0) for the GL(1,R)-gauge symmetry. The BRST-charge on the boundary is then given

as

Q =

∫
dz(cT + vJ + cu∂v + cb∂c) (3.69)

where the requirement of cc = 28 now becomes clear: by cancelling the contributions to the

conformal anomaly from the bc-system with cbc = −26 and the uv-system, cuv = −2, the

additional system Sc ensures the nilpotence of the operator Q.

Interestingly, there are no contributions to the conformal anomaly from ZI and YI ,

because fermionic and bosonic components are of equal count. This arguments carries over

to the current J , which explains the absence of an GL(1,R)-anomaly.

3.2.3 Twistor-string vertex operators for N=4 SYM

Vertex operators representing physical states need to be primary fields with respect to the

generators (3.68). The simplest form will represent SYM-states and can be constructed

combining the currents jr from the gauge group G in SC with any field φ(Z) having zero

conformal dimension and being invariant under GL(1,R):

Vφ = jrφ
r(Z), r = 1, . . . ,dimG . (3.70)

The particle spectrum represented by a twistor string vertex operator can be determined

applying the Penrose transformation described in subsection 3.2.1 to the twistor wave-

function φr(Z). Being neutral under GL(1,R)-scalings, it takes values in the bundle

O(0) = O(2h− 2) over P̃T. Correspondingly, it describes a particle of helicity 1.

As already discussed in subsection 3.2.1, the superwavefunction φr(Z) in supertwistor

space (3.58) contains an expansion u(kψ) into fermionic variables (3.59). Correspondingly,

the vertex operator Vφ represents the N=4 multiplet

φr : ((1, 1), (1
2 , 4̄), (0, 6), (−1

2 , 4), (−1, 1)) , (3.71)

where the bold number states the SU(4)R representation, which in turn is determined by

the requirement of φr transforming as a singlet under the R-symmetry group SU(4)R.

3.2.4 Twistor-string vertex operators for N=4 conformal supergravity

In addition to the vertex operators introduced in the previous section, one can construct

further vertex operators corresponding to states in linearized conformal supergravity (see

subsection 2.9) as initially explored by Berkovits and Witten in [76]. By combining the

fields Y and ∂Z of conformal dimension one with vertex functions f I(Z) and gI(Z) of zero

conformal dimension one obtains

Vf = YIf
I(Z) and Vg = gI(Z)∂ZI . (3.72)
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In order to ensure neutrality under GL(1,R)-scalings for Vf and Vg, f and g have to

carry charge 1 and −1 to compensate for the contributions from Y and ∂Z respectively.

Furthermore, in order to be primary with respect to the Virasoro and GL(1,R)-generators,

the following physicality conditions have to be satisfied:

∂If
I = ∂αf

α(Z) − ∂af
a(Z) = 0, (3.73)

ZIgI = Zαgα + Zaga = 0. (3.74)

In addition to the above constraints, f I and gI exhibit the gauge invariances [74]

δf I = ZIΛ and δ1gI = ∂Iχ , (3.75)

which correspond to changing the vertex operators by an BRST-exact term.

Without taking the index I into account, f I hasGL(1,R)-weight 1 and thus corresponds

to a particle of helicity 3
2 . The SL(2,C)-indices alter the helicity by either adding or

subtracting 1
2 . Therefore, one is left with a helicity 2 and a helicity 1 state from each of the

bosonic parts A and A′. The helicity 1 functions are removed by virtue of (3.73) and (3.75),

leaving fA and fA′ to serve as highest helicity states for two positive helicity N=4 graviton

multiplets. From the fermionic part fa one obtains in addition four N=4 multiplets with

leading helicity 3
2 . A similar analysis shows the vertex operators of type Vg to describe the

helicity conjugated part to the spectrum obtained from Vf .

A complete set of vertex operators satisfying all constraints was found by Dolan and

Ihry in [77]. Considering the sector originating from vertex operators of type Vf first, there

are three consistent choices:

• Vfp(z) = fAYA yields one graviton multiplet, ((2, 1), (3
2 , 4̄), (1, 6), (1

2 , 4), (0, 1)) of

positive helicity, where the vertex function fA is

fA =

∫
dk

k2
pA

2∏

B′=1

δ(kπB′ − pB′

) exp(ikωDpD)u(kψ). (3.76)

• Vfc(z) = fA′Y A′

+ f̃AYA delivers a second graviton multiplet of positive helicity as

above, where

f̃A = −isAs̄A′

∫
dk

k3

∂

∂πA′

2∏

B′=1

δ(kπB′ − pB′

) exp(ikωDpD)u(kψ) (3.77)

and

fA′ = s̄A′

∫
dk

k2

2∏

B′=1

δ(kπB′ − pB′

) exp(ikωDpD)u(kψ). (3.78)

Here spinors sA and s̄A′ are chosen to satisfy pAsA = 1 and pA′ s̄A′

= 1.

• Vff
(z) = fmYm + f̂AYA finally describes a gravitino multiplet of positive helicity

transforming in the 4 of SU(4)R: ((3
2 , 4), (1, 15⊕1), (1

2 , 20⊕4̄), (0, 10⊕6), (−1
2 , 4)).

Explicit expressions of fm and f̂A will not be used below, but can be found in refer-

ence [77].
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Switching to vertex operators of type Vg, one finds the following three functions to satisfy

all constraints:

• Vgp(z) = gA′

∂πA′ corresponds to a negative helicity graviton multiplet, ((0, 1), (−1
2 , 4̄),

(−1, 6), (−3
2 , 4), (−2, 1)), where the vertex function gA′

reads

gA′

=

∫
dk k πA′

2∏

B′=1

δ(kπB′ − pB′

) exp(ikωDpD)u(kψ). (3.79)

• Vgc(z) = gA∂ω
A + g̃A′

∂πA′ delivers a second graviton multiplet of the above type,

where

gA = isA

∫
dk

2∏

B′=1

δ(kπB′ − pB′

) exp(ikωDpD)u(kψ) (3.80)

and

g̃A′

= −is̄A′

sAω
A

∫
dk k

2∏

B′=1

δ(kπB′ − pB′

) exp(ikωDpD)u(kψ). (3.81)

• The multiplet containing gravitini of negative helicity ((1
2 , 4̄), (0, 10⊕ 6), (−1

2 , 20⊕
4), (−1, 15 ⊕ 1), (−3

2 , 4̄)) is given by Vgf
(z) = gm∂ψ

m + ĝA′

∂πA′ . Again, explicit

expressions for gm and ĝA′

will not be needed and can be found in reference [77].

However, spacetime states represented by Vfp and Vfc (and similarly Vgp and Vgc) are

not independent particles, but comprise a so-called dipole ghost as discussed in subsection

2.9.

Applying the twistor version of a spacetime translation to Vfp results in a shifted plane

wave solution, while the action on Vfc is twofold (see subsection 2.9). Besides of the expected

shifted particle one additionally obtains a contribution proportional to a plane wave:

Vfp → V ′
fp
,

Vfc → V ′
fc

+ V ′′
fp
. (3.82)

Performing the above consideration for vertex operators of type Vg, one can identify Vfp

and Vgp with a plane wave and Vfc and Vgc with the conformal wave part of (2.138) by

comparison of their properties under translations.

The preceding analysis suggests that the degrees of freedom corresponding to the plane

wave part reside in fA and gA′ , while the functions fA′ and gA contain the degrees of freedom

of the conformal wave part of the particles. In the discussion of the modified twistor string

theory suggestion for N=8 supergravity below, it will be shown in subsection 4.3 that the

degrees of freedom cannot be separated into two parts of the bosonic twistor. While the

decomposition of the bosonic index into SL(2,C)×SL(2,C) is natural in twistor space, the

components A and A′ mix in spacetime as shown in [72]. In particular, the two bosonic parts

of the wavefunction are coupled by the equation of motion in spacetime (see eq. (4.18)).

Nevertheless, the terms fA′Y A′

and gA∂ZA are closely related to the conformal wave part

of the particle, because of their behavior under translations as shown in [76].
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3.2.5 Amplitudes in twistor string theory

The correlation function for a set of integrated vertex operators derived from the worldsheet

action (3.60) is given by

M =

∫
[dĀ][dZ][dY ]e−SV1V2 . . . Vn . (3.83)

Again, as in discussion of the boundary conditions for the open string, it is possible to

employ the gauge freedom to set A and Ā to zero, which results in purely holomorphic and

antiholomorphic fields Z and Z̄ respectively. Considering tree amplitudes in the following,

the worldsheet is a disk. This in turn makes it possible to employ the so-called doubling

trick: one can identify the fields Z and Z̄ with a theory of holomorphic fields on the

sphere S2 = CP 1. The analogue of the function U introduced in eq. (3.66) is the patching

function relating the two open covers of CP 1. Therefore the gauge structure is classified

by the topologically nontrivial GL(1)-configurations on S2.

Nontrivial GL(1)-configurations on the sphere S2 correspond to instantons, which are

labeled by their instanton number d ∈ N. While in each instanton sector d any gauge

configuration can be written as a fluctuation δĀ of zero instanton number around a fixed

configuration Ād, it is not possible to relate fixed configurations from different sectors in

this way. So the functional integration over Ā in the correlation function eq. (3.83) splits

into a summation over the different instanton sectors. On the two-sphere, one can express

any fluctuation as δĀ = ∂̄Ω, where Ω is some complex function, which leads after summing

over all instanton sectors to the measure

[dĀ] =
∞∑

d=0

[dΩ] det(∂̄) (3.84)

Now one can rewrite the determinant as the (u, v)-ghost system and absorb it into the

definition of the action S. In addition, the volume [dΩ] of the gauge group GL(1) will be

absorbed into a prefactor, which will be cancelled in the calculation below:

M =

∞∑

d=0

∫
[dZ][dY ]e−SV1V2 . . . Vn . (3.85)

The remaining functional integration over the fields Z and Y

[dZ][dY ] =

8∏

I,J=1

[dZI ][dYJ ] (3.86)

can be performed by expanding them into modes of (∂ + A)(∂̄ + Ā) and integration over

the mode coefficients. The expansion into homogeneous coordinates uj, ūj, j = 1, 2 of CP 1

yields

Zα =
∑

{b1...bd}

βα
b1···bd

ub1 · · · ubd +
∑

{b1...bd}

bα,i1...ik
b1...bdj1...jk

ūi1 · · · ūiku
b1 · · · ubduj1 · · · ujk

ψα =
∑

{b1...bd}

γα
b1···bd

ub1 · · · ubd +
∑

{b1...bd}

cα,i1...ik
b1...bdj1...jk

ūi1 · · · ūiku
b1 · · · ubduj1 · · · ujk (3.87)
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The first terms in the expansion eq. (3.87) are solutions to the equation of motion for ZI :

(∂̄ + Ā)ZI = 0 (3.88)

and are referred to as zero modes. While they are constant in the case of d = 0, they are

holomorphic in u for d > 0. Analogously, the expansion of YI reads

YI = (Yα, Ya) =
∑

{b1...bd}

(b̃i1...ik
α,b1...bdj1...jk

c̃i1...ik
a,b1...bdj1...jk

)ūi1 · · · ūiku
b1 · · · ubduj1 · · · ujk . (3.89)

Since the coefficients b̃ and c̃ are conjugate to the coefficients of the non-zero modes of ZI ,

the integration over (b, b̃) and (c, c̃) corresponds to a Wick contraction of Z and Y . Once

all Wick contractions are performed, the remaining nonzero mode parts of Z will give no

contribution to the correlator and one can replace the remaining Z’s with their zero mode

part. The remaining coefficients β and γ imply a holomorphic map from CP 1 to complex

projective twistor space PT. The such defined homogeneous polynomial of degree d can

be interpreted as a holomorphic curve of the same degree, parameterized by β and γ.

In order to connect to the usual string theory description in terms of complex worldsheet

variables, one has to express the variables uj , ūj of CP 1 in terms of (z, z̄). While this seems

topologically impossible at the first glance, one has to remember how the CP 1-geometry

arose. Because the open string vertex operators depend on the real axis of the worldsheet

only, it is sufficient to restrict the attention to just one coordinate patch of S2. The zero-

mode expansion can then be written as

ZI(z) =
∞∑

d=0

ZI
−dz

d (3.90)

which, after having taken care for the SL(2,R)-symmetry on the complex worldsheet and

remembering the absorbed factor of theGL(1,R)-volume above leads to the final expression:

M =
∞∑

d=0

∫ d∑

m=0

d8Z−m

SL(2,R)GL(1,R)
e−SV1 . . . Vn , (3.91)

where Wick contractions transform into an operator product expansion on the worldsheet

〈ZI(z)YJ (w)〉 =
δI

J

z − w
(3.92)

and are understood to be performed on the vertex operators Vi before evaluating the inte-

gral.

How does this calculational procedure connect to different helicity sectors for tree am-

plitudes? In Wittens original twistor string article [51], he conjectured NpMHV tree ampli-

tudes to be supported on algebraic curves of degree

d = p+ 1 , (3.93)

where p is allowed to take the values −1, 0, 1, . . .. Limiting the consideration to particles

of maximal helicity s, the number of negative helicity particles is given by p+ 2. Here the

examples of d = 0 and d = 1 will be discussed.
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d = 0 Fermionic integration in this case does provide four integrations, which means that

contributions to the d = 0 part of the amplitude occur, if there is exactly one particle with

negative helicity (see equation (3.59)). This is the MHV sector described in subsection 2.5.

Assuming the fermionic integration to be performed already, one will have to integrate the

coefficients ZI
0 over all twistor space, since a zero dimensional algebraic curve is just a point

∫ 2∏

A,A′=1

dωA
0 dπA′

0

SL(2,C)GL(1,R)

n∏

i=1

dzi (3.94)

In the case of three particles, the integration over the insertion points zi on the worldsheet

will be cancelled by SL(2,C)-invariance.

d = 1 Here eight fermionic moduli have to be integrated over, which corresponds to ampli-

tudes containing two particles of negative helicity, which are the MHV amplitudes. Assum-

ing the two negative helicity particles being labeled by 1 and 2, the fermionic integration

will result in a factor (z1 − z2)
4 (see for example [75]). For the d = 1 case, zero modes have

to be expanded to first order: ZI(z) = ZI
0 + ZI

−1zi, resulting in the measure

∫ 2∏

A,A′=1

dωA
0 dωA

−1 dπA′

0 dπA′

−1

SL(2,C)GL(1,R)

n∏

i=1

dzi. (3.95)

3.3 Dual S-matrix description for N=4 SYM theory

3.3.1 Leading singularities

Leading singularities [78, 79, 80, 81] arise as invariants of N=4 SYM scattering amplitudes

and can be evaluated employing the generalized unitarity method [32, 82, 83, 84, 85, 86].

This method relies on the calculation of scattering amplitudes across a given branch cut

in the space of kinematical invariants. For one-loop amplitudes this has initially been done

by cutting24 two propagators and integrating over the Lorentz-invariant phase space of the

product of the remaining tree-level amplitudes. Applying this technique once for the usual

Feynman diagrams and a second time for box integrals in the one-loop expansion eq. (2.101),

it is possible to calculate the box coefficients using this method.

For more general scenarios, it is possible to not only cut one single but all available

propagators. The singularity thus obtained leads to the notion of the leading singularity,

which by a slight inconsistency of terminology refers to the discontinuity across a leading

singularity. In other words, leading singularities are the highest-codimension singularities

at l loop-level, which can be obtained by cutting 4l propagators in the generalized unitarity

method.

Leading singularities are well-defined and IR-finite objects. It turns out that the box

coefficients Cr,s,t,u from expanding a one-loop amplitude in N=4 SYM into scalar box func-

tions are exactly the one-loop leading singularities. Generalizing this fact, it was conjectured

24Cutting a propagator refers to choosing a kinematical configuration for complexified momenta, which

puts the propagator on its pole p2 = 0.
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that leading singularities together with their corresponding integral basis can determine

amplitudes of N=4 SYM theory at any loop-order [19] completely.

A general leading singularity consists of subamplitudes from all MHV sectors including

the special MHV =N−1MHV three-point amplitude, which has been discussed25 in subsec-

tion 2.5. For the MHV sector one can show that all leading singularities are equal to the

tree amplitude, which explains why MHV amplitudes can be expanded as

AMHV = AMHV
tree (1 + f1−loop + f2−loop + · · · ) . (3.96)

While box coefficients and thus one-loop leading singularities are related by infrared (IR)

equations and subject to dual conformal constraints, this behavior is expected to extend

to higher-loop leading singularities [34, 35]. However, higher-loop generalizations of the

one-loop IR equations are not well understood due to the lack of a complete integral basis.

For the same reason, higher-loop leading singularities have not been studied in detail so

far.

3.3.2 Functional and residues

Many of the properties and symmetries of N=4 SYM amplitudes discussed in subsection 2.6

above are neither manifest nor visible in the usual, Feynman-diagram based approach. As

already discussed in subsection 2.1.1, this drawback can be avoided in an S-matrix theory.

One would like to find a formalism which directly produces amplitudes or building blocks

of those, without making reference to Feynman diagrams during the calculation. The price

to pay is that spacetime locality emerges in a complicated way from those formulations.

In a suggestion of Arkani-Hamed et al. the building blocks to be delivered by an alter-

native formulation are the leading singularities described in the previous subsection [87].

More precisely, the Grassmannian integral

Ln;k(Za) =
1

vol(GL(k))

∫
dk×nCαa

(12 · · · k) (23 · · · (k + 1) ) · · · (n1 · · · (k − 1) )

k∏

α=1

δ4|4(CαaZa)

(3.97)

is conjectured to yield the leading singularities for an n-particle amplitude being homoge-

neous of degree 4k in Grassmann coordinates η and thus residing in the Nk−2MHV sector.

Here α = 1 . . . k, a = 1 . . . n and Za are the supertwistor variables defined in subsection

3.2.1. The objects in the denominator are called minors and are defined as the determinant

of a k × k submatrix of Cαa consisting of the columns m1, · · · ,mk:

(m1 · · ·mk) ≡ εα1···αkCα1m1 · · ·Cαkmk
. (3.98)

Starting from the functional eq. (3.97), a couple of steps are necessary to understand its

interpretation and the consequences for leading singularities. The lines below roughly fol-

low [87], however, a lot of calculational details are omitted here and can be found in that

reference.
25The MHV-amplitude corresponds to an algebraic curve of degree d = 0 in twistor space, which is just

a point. This scenario is mentioned shortly at the end of subsection 3.2.5 above.
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Considering the product of δ4|4-functions, it is invariant under theGL(k)-transformation

Cαa → Lβ
αCβa (3.99)

for any invertible k × k-matrix Lβ
α. Carrying the character of a gauge symmetry, it is

necessary to fix this symmetry before evaluating the integral in order to avoid divergences.

The gauge-fixing can most easily be done by interpreting the matrix Cαa as a collection of

k-vectors and use the GL(k)-symmetry to bring k of them to the k-dimensional orthogonal

Cartesian basis. The remaining elements of the matrix will be labeled by cIi, where now

I = 1 . . . k and i = 1 . . . (n − k). This version of gauge fixing is not unique, but it will

simplify calculations below:

C =




1 0 · · · 0 c11 c12 · · · c1 (n−k)

0 1 · · · 0 c21 c22 · · · c2 (n−k)
...

...
. . .

...
...

...
. . .

...

0 0 0 1 ck1 ck2 · · · ck (n−k)



. (3.100)

In terms of the entries of the gauge-fixed matrix one can now write down the gauge-fixed

version of eq. (3.97):

Ln;k(Za) =

∫
dk×(n−k)cIi

(12 · · · k) (23 · · · (k + 1) ) · · · (n1 · · · (k − 1) )

∏

I

δ4|4(ZI + cIiZi) , (3.101)

which can be brought back into spinor-helicity momentum space with momentum spinors

µ and µ̄ via the usual half-Fourier transform

Ln;k(µ, µ̄, η) =

∫
dk×(n−k)cIi δ

2(µi − cIiµI)δ
2(µ̄I + cIiµ̄i)δ

4(ηI + cIiηi)

(12 · · · k) (23 · · · (k + 1) ) · · · (n1 · · · (k − 1) )
. (3.102)

Taking the available bosonic δ-functions and the number of variables cIi into account and

subtracting four for the remaining momentum conserving δ-function, one ends up with a

total number of d := (k− 2)× (n− k− 2) integration variables. In a last step one can unify

the integration variables into a d-vector τ by replacing

δ2(µi − cIiµI)δ
2(µ̄I + cIiµ̄i) = δ4(

∑

a

pa)J(µ, µ̄)

∫
d(k−2)(n−k−2)τγδ(cIi − cIi(τγ)) (3.103)

where J(µ, µ̄) is a Jacobian factor26 and the index γ runs from 1 to d. The final expression

then reads:

Ln;k = Ln;k × δ4(
∑

a

pa) (3.104)

where Ln;k is defined as

Ln;k = J(µ, µ̄)

∫
d(k−2)×(n−k−2)τ

[(12 · · · k) (23 · · · (k + 1) ) · · · (n1 · · · (k − 1) )] (τ)

∏

I

δ4(ηI + cIi(τ)ηi) .

(3.105)

26In the original version of the paper [87] the sign of the Jacobian factor has been ignored. However, once

it comes to calculating box diagrams in terms of residues below, the relative sign will play a role and even

result in modified expressions compared to those given in the original work.
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The degree of the minors eq. (3.98) is given by min[k − 2, n − k − 2]. This renders the

NMHV situation as the easiest nontrivial one: for k = 3 the minors are linear expressions

in τ . Note that the integrand is a holomorphic function of the (complexified) variables τγ .

In this light, eq. (3.104) is a contour integral in Cd.

3.3.3 Multiresidues

As stated initially, eq. (3.104) is conjectured to calculate the leading singularities of an

amplitude. Explicitly, its value is determined by the residues enclosed in the contour chosen

for the evaluation. However, dealing with an expression in multiple complex variables, the

common notion of a residue has to be extended. Following ref. [87], the generalization is

presented for a complex function of the form

f(τ1, . . . , τd) =
g(τ1, . . . , τd)

P1(τ1, . . . , τd) · · ·Pn(τ1, . . . , τd)
, (3.106)

where p are polynomials linear in τ1, . . . , τd and n > d. As mentioned above, integrands

of this form occur in eq. (3.105) in the NMHV sector, where all minors are linear in the

integration variables τγ . A residue occurs if d of the polynomial factors vanish:

Pi1 = · · · = Pid = 0. (3.107)

Solving the above system of equations determines the point τ∗ = τ∗1 , . . . , τ
∗
d ∈ Cd. The

residue is then defined by

Res[f ](τ1, . . . , τd) =
g(τ∗1 , . . . , τ

∗
d )

∏
i6=(i1,...,id) pi(τ∗1 , . . . , τ

∗
d ) det

(
∂(pi1

,···pid
)

∂(τ1,...,τd)

)∣∣∣∣
τ∗
1 ,...,τ∗

d

. (3.108)

In general, choosing d out of n minors to vanish will result in
(
n
d

)
different residues.

In the NMHV situation a residuum is obtained by choosing d = n− 5 minors to vanish

simultaneously. Due to the linear degree of the minors there is exactly one solution and

thus one residue for each of these choices. Correspondingly, any residue in the NMHV

sector can be identified by noting the vanishing minors, where each minor (cf. eq. (3.98)) is

referred to by its first entry m1. The resulting list with n− 5 elements is enclosed in curly

brackets and is referred to as Plücker label

{i1, . . . , id} . (3.109)

In the 8-point NMHV situation a residue can be calculated by choosing 3 = n − 5 minors

to vanish. For example the residue obtained by setting the denominator terms (123), (234)

and (781) to zero, will be referred to as {1, 2, 7}.
One property of the multiresidues follows from inspecting eq. (3.108): besides of being

defined at the point (τ∗1 , . . . , τ
∗
d ), the sign of the residue depends on the order in which the

polynomials pi are taken to zero. This in turn implies total antisymmetry for the Plücker

label

{i1, . . . , id} = sgn(σ){σ(i1), σ(i2), . . . σ(id)} . (3.110)
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By choosing certain minors to vanish, one implicitly defines a contour for the integration.

In particular, the residue is determined by enclosing each complex component of the vector

τ∗ by an infinitesimal circle. While in the complex plane the residue is encircled by S1,

this geometrical picture can not be extended to arbitrary complex dimensions d. While

the contour is now (S1)d ∼= T d of real dimension d, the subspace necessary to surround the

point (τ∗1 , . . . , τ
∗
d ) has real dimension 2d − 1. It is only in the complex plane where those

two dimensions agree. In order to emphasize this difference for complex dimensions larger

than one, the contour is referred to as the distinguished boundary.

While the discussion above is valid for the NMHV sector, new effects show up for k > 3.

The fact that minors are now polynomials of higher degree causes two changes: the Plücker

label has to be accompanied by an additional index denoting which of the solutions of the

polynomial set of equations is meant. In addition, dealing with polynomials of higher degree

will also include special situations like doubled zeros. This leads to the notion of composite

residues, which are discussed in [87] and not used below.

3.3.4 Tree-level amplitude

Finally, the NMHV tree amplitude can be expressed in terms of residues. With the sums

E =
∑

k even

{k}

O =
∑

k odd

{k} (3.111)

and the product27

{i1} ⋆ {i2} =

{
{i1, i2} if i1 < i2

0 otherwise

}
(3.112)

the BCFW form of the tree amplitude is given by

Atree
BCFW = E ⋆ O ⋆ E ⋆ · · · , (3.113)

and the parity-conjugated (P(BCFW)) form is obtained from

Atree
P(BCFW) = (−1)n−5O ⋆ E ⋆ O ⋆ · · · . (3.114)

The names BCFW and P(BCFW) form refer to different solutions of BCFW shifts, which

have been used to obtain the particular forms above. Both versions are identical, which

can be easily shown numerically. However, it is highly nontrivial to show the equivalence

using analytic forms of the spacetime leading singularities corresponding to the residues.

The identities necessary to show

ABCFW = AP(BCFW) (3.115)

are called remarkable identities, ensure the absence of spurious poles, parity invariance and

cyclicity of tree amplitudes and are discussed in subsection 6.2.

27Here a slightly different but equivalent notation for residues is used as compared to [87]: {i}{j} := {i, j}

and {i + j}{k} := {i, j} + {i, k}
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3.3.5 Box coefficients and residues in the NMHV sector

Using the definitions from the last subsection, it is now possible to compare known results

for leading singularities from field-theoretical calculations with residues determined with

the help of eq. (3.108). Comparing tree and one-loop results for amplitudes with six, seven

or eight legs reveals that the particular leading singularities are indeed given by a certain

linear combination of residues.

Although the labeling of NMHV residues with n− 5 coordinates is favorable for lower-

point amplitudes, general considerations are more accessible employing the complementary

labeling. The usual labeling can be obtained from the 5-number complementary labeling

by the bar operation

{j1, . . . , j(n−5)} = {i1, . . . , i5} = {Ξ} · sgn(i1, . . . , i5) · sgn(i1, . . . , i5,Ξ) (3.116)

where Ξ is the ordered complement

{1, . . . , n}\{i1, . . . , i5} . (3.117)

In the NMHV sector, there is a clear map between box coefficients and residues [87].

The simplest situation occurs for the 3-mass box, where the corresponding box coefficient

is given by

1

2

s− 1

b
b
b

s

t− 1 b
b
b

t

n
b

b
b

C3m
12st =̂ {s− 2, s − 1, t− 2, t− 1, n}, (3.118)

and any other 3-mass boxes can be obtained by cyclic shifts.

The expressions for other box coefficients can be easily obtained as sums of (degenerate)

3-mass boxes by employing the results from [88]:

C1m
r,r+1,r+2,r+3 = C2me

r+2,r+3,r,r+1 + C3m
r+1,r+2,r+3,r

C2mh
r,r+1,r+2,s = C3m

r+1,r+2,s,r + C3m
r,r+1,r+2,s (s > r + 3, r > s+ 1)

C2me
r,r+1,s,s+1 =

∑

u,v
u≥r+2

u+2≤v≤s

C3m
r,r+1,u,v +

∑

u,v
u≥s+2

u+2≤v≤r

C3m
s,s+1,u,v (s > r + 2, r > s+ 2), (3.119)

where all indices have to be understood modulo n. Writing ‘>’ means ‘> modn’ and the

summations have also to be adapted accordingly. If not stated otherwise, the modulo-n

notation will be understood implicitly below.
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3.3.6 Generalized residue theorems

As discussed in reference [87], residues of eq. (3.105) are not independent objects, but are

subject to generalized (or global) residue theorems (GRTs). In particular, all NMHV GRTs

can be generated from basic GRTs, which have the form,

n∑

j=1

{j, i1, ..., in−6} = 0 . (3.120)

where (i1, ..., in−6) is referred to as source term and will be used to uniquely label basic

GRTs below. It is not difficult to see that any GRT constrains the sum of 6 residues to

vanish. In order to avoid confusion, source terms are enclosed by usual brackets (), while

residues will be enclosed by curly brackets {}.
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4 A twistor-string description for N=8 supergravity?

4.1 Twistor string theory: state of the art

The twistor string theory [51, 74] introduced in subsection 3.2.2 reproduces the known

results for tree-level amplitudes in N=4 SYM theory. However, at the loop level, N=4

SYM is intrinsically coupled to conformal supergravity: the complete collection of states

described by the twistor string theory can propagate around internal loops. Although it

is possible to calculate loop amplitudes in twistor string theory [75], field-theory results

for conformal supergravity coupled to N=4 SYM are not available due to the nonunitary

nature of the former (see subsection 2.9).

Tree amplitudes with external conformal supergravity states have been calculated em-

ploying twistor string theory [77, 76]. In parallel to the situation described in the last

paragraph, comparison with field-theory results is difficult: the Feynman formalism for

conformal supergravity has not been explored due to the higher derivative and nonunitary

nature of the theory. So the only calculations in such theories have been performed in the

twistor string formalism, although the interpretation of S-matrix elements in a nonunitary

theory remains unclear.

With the objective of curing those drawbacks and realizing a description of Einstein

gravity (or supersymmetric extensions thereof), Abou-Zeid, Hull and Mason suggested a

new family of twistor strings in [73]. In order to do so, it is necessary to reduce the conformal

symmetry of the gravity part of twistor string theory to Poincaré symmetry. One way to

achieve this is to fix the twistor analogue of the light cone at infinity (eq. (3.30)), which has

to be added in order to compactify Minkowski spacetime. As discussed in subsection 3.2.1,

in twistor space it is represented by the infinity twistor.

In the proposal of Abou-Zeid, Hull and Mason (AHM), the Berkovits open twistor string

theory is modified by introducing additional worldsheet gauge fields, which are coupled to

currents preserving the infinity twistor eq. (3.32). While this mechanism can be applied in

a wide range of situations describing several different supersymmetric extension of Einstein

gravity, one particular suggestion was expected to describe N=8 supergravity. An initial

computation of a three-point MHV graviton correlator supported the speculation. How-

ever, in [89] Nair showed the conjugated (MHV) amplitude to vanish, thus questioning the

original interpretation.

In the subsections below the properties of the modified theory introduced above will be

investigated further. After describing the modification and its implications in detail, the

equations of motion and the gauge invariances of the negative-helicity graviton multiplet

are examined by translating them into Minkowski spacetime. Doing so, one finds that

the graviton multiplet contains no on-shell degrees of freedom. Furthermore, the equation

of motion for the additional gauge field changes the localization properties of the original

theory: for amplitudes localizing in higher instanton sectors the moduli space of algebraic

curves is now reduced, which suggests the vanishing of these correlators. From the restricted

set of algebraic curves it follows that the amplitudes can only depend nontrivially on one
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type of spinor momenta, rendering the theory to be chiral.

Finally, the equality of a certain three-point conformal supergravity amplitude with the

known Einstein supergravity result will be presented in subsection 4.5.

4.2 Additional worldsheet symmetries

In the Berkovits open string theory the GL(1)-structure of projective twistor space has

been incorporated into the action (3.60) by employing gauge fields A and Ā without kinetic

terms, thus taking the role of Lagrange multipliers. In the same manner new gauge fields

corresponding to conserved currents have been suggested by AHM in order to preserve the

infinity twistor.

The derivation of additional constraints from the modification will be restricted to

holomorphic quantities because the antiholomorphic part works analogously and is fixed by

boundary conditions in the open string case (see subsection 3.2.2).

Assuming the target space of the open string theory (3.60) to be equipped with a one-

form kI , the corresponding bosonic current K = kI(Z)∂ZI can be coupled to a gauge field

B̄ to result in the modified action28:

S =

∫
d2z

(
YI ∂̄Z

I + ĀJ + B̄K
)

+ Sc + barred part. (4.1)

In order for K to be well defined on the target twistor space RP 3|4, its interior product

with the Euler operator Υ = ZI ∂
∂ZI

has to vanish, which implies

ZIkI = 0. (4.2)

The above condition fixes kI to have GL(1,R)-charge −1, and therefore K has homogeneity

degree 0. In order to guarantee vanishing of the GL(1,R)-anomaly, one has to require K

to have conformal weight 1, which determines kI to be a worldsheet scalar. As a conse-

quence, all commutators of currents J (eq. (3.61)) and K vanish so that J and K generate

an Abelian Kac-Moody algebra with central charge zero. Together with the cancellation

between bosons and fermions in the Y Z-system this is sufficient to guarantee the absence

of a GL(1,R)-anomaly. Moreover, in order to have vanishing conformal anomaly (cf. 3.69),

the central charge of the current system Sc is now determined to be cc = 30 by taking into

account the additional ghosts from the additional gauge symmetry cadditional = −2 .

Parallel to the situation in the original open twistor string theory, vertex operators for

physical fields have to be chosen to be primary with respect to the symmetry generators T, J

and K. Therefore, conditions (3.73) and gauge invariances (3.75) have to be accompanied

by additional constraints

f IkI = 0, f Ik[I,J ] = 0, (4.3)

while gI obtains a further gauge symmetry δ2gI = ηkI . Vertex operators Vφ are not affected

by the additional symmetry. Thus one additional goal of the modification is implemented:

28The meaning of the bar is related to the choice of the worldsheet metric and the specific form of the

twistor correspondence employed as has been discussed in 3.2.2. Here, the bar denotes comlex conjugation.
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the conformal symmetry of the gravity part of twistor string theory is broken, while it

remains intact for the SYM part.

The appropriate expression for the nonzero components of the infinity twistor is (cf. 3.32)

IA′B′

= εA
′B′

, (4.4)

and consequently IAB = εAB . In order to keep IIJ invariant, the one-form kI is chosen to

be

kI = −Θ(Z)IIJZ
I , (4.5)

where Θ denotes a function with homogeneity degree −2 compensating the contributions

from other components in the one-form above, which can be chosen as Θ = Θ(π), see ref.

[73]. Condition (4.2) and the second part of (4.3) are then satisfied trivially, such that one

is left with

∂If
I = 0, (4.6)

δf I = ZIΛ, (4.7)

f IIIJZ
JΘ(Z) = fA′πA′

= 0 (4.8)

for the positive helicity graviton. The other graviton g is constrained in the following way:

ZIgI = 0, (4.9)

δ1gI = ∂Iχ, (4.10)

δ2gI = ηkI = ΘIIJZ
Jη. (4.11)

Taking eq. (4.4) into account, the nonzero components of (4.11) are

δ2g
A′

= Θ · η εA′B′

πB′ ≡ ηΘπ
A′

. (4.12)

The fermionic multiplets are not affected by the additional gauge symmetry.

Abou-Zeid, Hull and Mason use the above constraints and gauge invariances to set fA′

and gA′

to zero. Their interpretation is that one of the degrees of freedom contained in

the bosonic part of f I and gI , respectively, is removed. Summing up the remaining states,

there are six N=4 vector multiplets missing in order to reproduce the N=8 supergravity

spectrum. Assuming the gauge group G of Sc to be six-dimensional, one obtains the correct

number of states:

Helicity −2 −3
2 −1 −1

2 0 1
2 1 3

2 2

gA 1 4 6 4 1

ga 4 16 24 16 4

φr 6 24 36 24 6

fa 4 16 24 16 4

fA 1 4 6 4 1

N=8 1 8 28 56 70 56 28 8 1
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Note that in the above table the negative helicity N=4 graviton multiplet is closely

related to a conformal wave, which should not be the case in an Einstein gravity theory.

However, the two bosonic parts of a twistor are coupled by their equation of motion and

therefore do not exhibit independent degrees of freedom (see eq. (2.140)). The implications

resulting from this structure will be discussed in the next subsection.

4.3 Degrees of freedom

While the leading helicity degrees of freedom resulting from f I subject to gauge invariances

and constraints (4.6-4.8) have been shown to describe an Einstein graviton in [90], the

corresponding investigation for the negative helicity graviton will be carried out in this

subsection.

Following the ideas of [91], gI and the appropriate gauge invariances and constraints

(4.9-4.11) will be Penrose transformed into Minkowski space. The consideration can be

limited to the bosonic part α = (A,A′), because the fermionic degrees of freedom ga are

independent of the bosonic ones.

Penrose transforming the graviton vertex function gα = (gA, gA′) of GL(1,R)-weight

−5 results in

gα ↔ Γα(B′C′D′) =

(
ψA(B′C′D′)

φA′(B′C′D′)

)
, (4.13)

where the last part is the decomposition of α into (A, A′). The spacetime analogue of (4.9)

reads

Zαgα = 0 ↔
(

0

φA′

(A′C′D′)

)
= 0, (4.14)

which can be rewritten as

φA′

(A′C′D′) = εB
′A′

φA′(B′C′D′) = 0. (4.15)

In equation (4.12), ηΘ has GL(1,R)-weight −6 in order to match the homogeneity degree

of gα. Therefore, the Penrose transform of (4.12) yields

IαβZ
βηΘ ↔

(
0

η(A′B′C′D′)

)
. (4.16)

Furthermore, equations of motion for a massless particle have to be obeyed:

∇BB′

Γα(B′C′D′) = 0, (4.17)

which reads in components29:

∇BB′

ψA(B′C′D′) = 0 and ∇BB′

φA′(B′C′D′) + εABψA(B′C′D′) = 0. (4.18)

29The derivative ∇BB′

acts on twistor indices via the local twistor connection.
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The constraint (4.15) is solved by a totally symmetric function φ(A′B′C′D′), which can be

set to zero via (4.16). Plugging this result into the equation of motion (4.18), one obtains

∇BB′

ψA(B′C′D′) = 0 and εABψA(B′C′D′) = 0. (4.19)

Interpreting the above equation leads to an obvious conclusion: while φA′(B′C′D′) can be

gauged to zero, the field ψA(B′C′D′) vanishes on-shell and thus the corresponding twistor

function gα does not describe any physical degrees of freedom. Similar computations can

be performed for the other components in the negative helicity graviton multiplet, showing

the corresponding gα to either be pure gauge or to vanish on-shell.

4.4 An overconstrained system?

In order to further discuss the modified theory, implications of the constraints arising from

the equation of motion for the gauge field B̄ will be investigated. Varying (4.1) with respect

to B̄ yields

K = kI∂Z
I = Θ(Z)IIJZ

J∂ZJ ∼ πA′∂πA′

= 0. (4.20)

Due to its purely classical nature, this constraint does only affect zero modes of π. As

long as the amplitude resides in the d = 0 sector, πA′

does not depend on the worldsheet

coordinate z, such that equation (4.20) is satisfied by ∂πA′

= 0 trivially. However, in the

(d = 1)-instanton sector, the equation of motion

πA′∂πA′

= (π0A′ + π−1A′z)(πA′

−1) = π0A′πA′

−1 = 0 (4.21)

enforces proportionality of πA′

0 and πA′

−1. Considering the (d = 2)-instanton sector, one now

obtains

πA′∂πA′

= (π0A′ + π−1A′z + π−2A′z2)(πA′

−1 + 2πA′

−2z)

= π0A′πA′

−1 + 2π0A′πA′

−2z + π−1A′πA′

−2z
2 = 0. (4.22)

In order to satisfy the above equation, each part of the sum must vanish separately, leading

to

πA′

0 = m−1π
A′

−1 and πA′

0 = m−2π
A′

−2, (4.23)

where m−i denote factors of proportionality. Generalizing to the d-instanton sector, one

can show that all coefficients in the expansion have to be proportional to πA′

0 :

πA′

0 = m−iπ
A′

−i , ∀ i = 1, . . . d. (4.24)

What does the proportionality imply? While the ω-part of twistor space is not modified,

the expansion for π looks different compared to (3.90):

ωA = ωA
0 + ωA

−1z + ωA
−2z

2 + · · · + ωA
−dz

d, (4.25)

πA′ = π0A′ + π−1A′z + π−2A′z2 + · · · + π−dA′zd

= π0A′(1 +m−1z +m−2z
2 + · · · +m−dz

d). (4.26)
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While the degree of the algebraic curve is not altered, the dimension of its moduli space

in twistor space is reduced. Featuring 4(d + 1) dimensions in the unconstrained case,

there are now d additional conditions from (4.24) leaving 3d + 4 integrations: 2(d + 1)

integrations over the ω-zero modes, two integrations over πA′

0 and d integrations over the

factors of proportionality, m−i. So not all algebraic curves of degree d in twistor space are

considered, but a subset thereof.

While one could imagine the constraints from additional symmetries to be incorporated

in this way, problems arise from a different direction: the calculation of twistor string

amplitudes relies on a well balanced number of integrations and δ-functions, which after

performing all integrals results in the momentum conserving δ-function. Implementing the

additional constraints originating from the equation of motion for the field B̄ by inserting

additional δ-functions into the correlator, one would obtain an overconstrained system for

d 6= 0. The last condition explains why the three-point correlator calculated in [73] does

not exhibit the inconsistencies occurring in higher amplitude calculations: the d = 0 sector

is unaffected by the modification of the original twistor theory.

In order to further investigate the consequences of the additional conditions described

above, a constrained correlator shall be investigated more closely. Leaving aside integrations

over the moduli space of algebraic curves and the insertion points z for a moment, an n-

particle amplitude localizing in instanton sector d is proportional to

M ∼
n∏

i=1

∫
dki δ

2(kiπ
A′

i − pA′

i )
d∏

j=1

δ(π0π−j), (4.27)

where n integrations and 2n δ-functions originate from the vertex functions, while d δ-

functions additionally ensure proportionality according to (4.24). Before performing the

integrals, all πi can be replaced employing (4.26), yielding

M ∼
n∏

i=1

∫
dki δ

2(kiπ
A′

0 Ai − pA′

i )

d∏

j=1

δ(π0π−j), where Ai =

d∑

l=1

m−lz
l
i. (4.28)

In order to proceed further, one has to assume Ai 6= 0 ∀ i. This is a reasonable assumption,

because otherwise, by virtue of the first δ-function, the corresponding momentum would

vanish, resulting in a trivial dependence of the amplitude on pA′

i . Thus, the above equation

can be rewritten as

M ∼
n∏

i=1

∫
dki

1

π1′
0 Ai

δ

(
ki −

p1′
i

π1′
0 Ai

)
δ(kiπ

2′

0 Ai − p2′

i )

d∏

j=1

δ(π0π−j)

∼
n∏

i=1

1

π1′
0 Ai

δ

(
π2′

0 p1′
i

π1′
0

− p2′

i

)
d∏

j=1

δ(π0π−j)

∼
n∏

i=1

1

Ai
δ(π0 pi)

d∏

j=1

δ(π0π−j). (4.29)
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This result is in concordance with the conclusion of the previous paragraph: the first set of

δ-functions in the above equation implies the proportionality of all primed momenta pA′

i to

πA′

0 and consequently to each other. Hence all spinor brackets [ij] disappear, which implies

chirality of all (d > 0)-interactions in the gauged string theory.

4.5 A surprising result in conformal supergravity

The three-point correlator describing the scattering of one conformal wave graviton with

negative helicity and two positive helicity plane wave gravitons

〈Vfp1 Vfp2 Vgc3〉 = 〈fA
1 YAf

B
2 YB(g3C∂ω

C
3 + g̃C′

3 ∂π3C′)〉 (4.30)

localizes in the zero instanton sector. Following the procedure described in subsection 3.2.2

above, Wick contractions have to be performed in the next step employing the operator

product expansion (3.92). Since contractions give nonzero results only if taken between

quantities carrying the same type of indices, there is no quantity which can be combined

with ∂π3C′ to give a nonzero result. But any d = 0 correlator containing an uncontractable

expression of the form ∂Z will vanish, because the zero-modes of Z is not a function of the

worldsheet coordinate z in zeroth order of the instanton expansion. Starting therefore from

〈fA
1 YA f

B
2 YB g3C∂ω

C
3 〉 (4.31)

and applying all possible Wick contractions results in

1

(z1 − z2)(z2 − z3)(z3 − z1)

〈
fA
1 f

B
2 ∂[Ag3B]

〉
=

1

(z1 − z2)(z2 − z3)(z3 − z1)

〈
fA
1 f2A ∂Bg3B

〉

(4.32)

after partial integration. Evaluating the above expression by plugging in the appropriate

vertex functions (3.76) and (3.80), integrating over the moduli-space RP 3|4 and taking the

worldsheet SL(2,C)- and target space GL(1,R)-invariances into account yields

〈Vfp1 Vfp2 Vgc3〉 = δ4

(
∑

i

Pi

)
〈12〉8

〈12〉2〈13〉2〈23〉2 , (4.33)

which surprisingly agrees with the result from Einstein gravity [45].

Equation (4.32) can be found as an intermediate result in the calculation of AHM.

For their as well as Dolan and Ihry’s choice of vertex operators the expression ∂BgB can

be shown to represent a plane wave in spacetime. Therefore, the calculation in either

scenario results in (4.33). So the correlator evaluated in AHM’s article reproduces the

result of a three-graviton amplitude in conformal supergravity, with two positive-helicity

plane wave and one negative-helicity conformal wave graviton. The reason for this result is

obvious: since the calculated correlator localizes in the d = 0 sector, the constraints from the

additional gauge symmetry are satisfied trivially, as pointed out in the previous paragraph.

Therefore, the integration measure remains untouched compared to the unconstrained case.
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4.6 Discussion

The consequences of gauging an additional current in Berkovits’ open string theory as

proposed by Abou-Zeid, Mason and Hull are shown to require some adjustments in the

interpretation of the resulting theories compared to the original article [73].

The negative-helicity N=4 supergraviton multiplet is shown to vanish on-shell, if the

additional current (4.5) is gauged. Since the equation of motion for the new gauge field B̄

restricts the possible interactions of the theory significantly above the d = 0 instanton level,

the only remaining interactions are chiral. Moreover, the equations of motion of B̄ render

the correlators for d > 0 overconstrained, which questions the existence of interactions

above three-point tree-level.

In the light of the chiral interactions discussed in subsection 4.4 above, the interpretation

of the spectrum in the theory proposed to describe N=8 supergravity is unclear. Physical

states described by the theory are an N=4 gravity multiplet, four N=4 gravitini multiplets

of each chirality and six N=4 SYM multiplets. All interactions of the theory have to be

chiral, and probably there are no interactions above three-point tree-level. Nevertheless,

the vanishing of only one of the N=4 supermultiplets necessary to build up the complete

spectrum seems to rule out the interpretation as N=8 supergravity or a self-dual version

thereof.

Scattering of two plane wave gravitons with a conformal wave graviton part of opposite

helicity in the Berkovits open twistor string is shown to agree with the corresponding gravity

three-point interaction in Einstein gravity. This poses the question whether other tree-level

amplitudes in supergravity might be constructed in a similar manner.
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5 E7(7) and R4 counterterm in N=8 supergravity

5.1 Counterterms in gravity and N=8 supergravity

Divergences in the perturbative expansion of a quantum field theory can be removed by

suitable counterterms respecting the (quantum) symmetries of the theory. However, the

process of renormalization of a quantum theory of gravity is made special by the fact

that coupling constant is dimensionful. Employing the usual power-counting method [1]

to determine the superficial degree of divergence for terms in the perturbative expansion

of ordinary Einstein gravity, it turns out that there is an infinite number of terms to

renormalize. Thus an infinite number of constants in front of appropriate counterterms has

to be determined. A theory with this behavior needs an ultraviolet completion and is called

power-counting non-renormalizable.

On-shell counterterms for gravitational theories need to be composed from contractions

of the Riemann tensor Rµνρσ, because the Ricci tensor and the Ricci scalar vanish on-shell30.

By dimensional analysis one can immediately determine the loop-level, at which a certain

counterterm candidate appears, as will be shown on the example of the Einstein-Hilbert

action

SEH =

∫
d4xκ

√−g R , (5.1)

where the coupling constant κ = 1
16πGNewton

has mass dimension [κ] = 2 because of

[GNewton] = −2. The Ricci scalar has mass dimension

[Rµ
νρσ] = [∂ρΓ

µ
νσ] = [gµκ∂ρ∂νgκσ] = 2 (5.2)

which in combination with κ compensates the contribution from the integration measure

[d4x] = −4 thus rendering the action a scalar. However, any additional loop in the per-

turbative expansion of the theory will come with an extra factor of 1/κ, which has to be

compensated by an extra power of Rµνρσ. Accordingly, the number of loops can be obtained

from the power of the Riemann tensor by subtracting one:

∼ R ∼ R2 ∼ R3 ∼ R4 (5.3)

The pure gravity theory eq. (5.1) can be shown to be free of ultraviolet divergences at one

loop, which can be understood from the fact that the Gauss-Bonnet-term

RµνρσR
µνρσ − 4RµνR

µν +R2 (5.4)

is a total derivative in four dimensions. However, the addition of scalars or other par-

ticles renders the theory non-renormalizable [92]. Proceeding to the two-loop level, the

counterterm

R3 ≡ Rλρ
µν R

στ
λρ R

µν
στ (5.5)

30Conventions for the Riemann tensor and related objects are defined in eq. (2.120)
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has been shown to respect all symmetries and to exist on-shell [93, 94]. The nonzero

coefficient has been determined by [95] and later confirmed by [96].

Adding supersymmetry improves the ultraviolet behavior of many quantum field theo-

ries. In particular, the counterterm eq. (5.5) is forbidden in any supersymmetric version of

four-dimensional gravity, provided that all particles are in the same multiplet as the gravi-

ton. That is because the operator R3 generates a scattering amplitude of helicity structure

(− + . . .+) [97, 98] which can be shown to vanish by supersymmetric Ward identities (see

subsection 2.5).

The next higher possible counterterm [48, 99, 100, 101, 102]

R4 ≡ tµ1ν1...µ4ν4
8 tρ1σ1...ρ4σ4

8 Rµ1ν1ρ1σ1Rµ2ν2ρ2σ2Rµ3ν3ρ3σ3Rµ4ν4ρ4σ4 , (5.6)

where t8 is antisymmetric in each index pair µiνi and symmetric under the interchange

of two pairs µiνi ↔ µjνj [66], is known as the square of the Bel-Robinson tensor [103] or

simply the R4 term. This counterterm can appear at three loops (cf. eq. (5.3)) in N=8

supergravity.

The existence of an N=8 supersymmetric extension to eq. (5.6) follows from the ap-

pearance of the R4 term in the low-energy effective action (see subsection 3.1.3) of the N=8

supersymmetric closed superstring [68]. Showing up at order α′3, it represents the leading

correction to pure N=8 supergravity [64]. The N=8 supersymmetric multiplet of operators

containing R4 will be denoted by R4 below.

In the notation of refs. [104, 105], the R4 term appearing in the tree-level closed super-

string effective action in ten dimensions is

e−2φ(t8t8 −
1

8
ε10ε10)R

4 , (5.7)

where φ is the (ten-dimensional) dilaton. The second term in 5.7 is absent in the four-

dimensional compactifications to be considered below. The dilaton is also the string loop-

counting parameter, which implies that terms in the effective action at L loops are pro-

portional to exp(−2(1 − L)φ) in the string frame. The corresponding term in the one-loop

effective action in the IIA string theory differs from the IIB case in the sign of the ε10ε10

term, and is proportional to (t8t8+ 1
8ǫ10ǫ10)R

4. Although the ε10ε10-terms are absent in four

dimensions, the different possible dependences of R4 terms on the dilaton persist. Compared

to the situation in 10 dimensions, they are even more complicated, because the dilaton can

be expressed as a linear combination of the 70 scalars of N=8 supergravity. Because the

R4 terms itself are SU(8)-invariant so should be their prefactors. Green and Sethi [106]

found powerful constraints on the possible dependences of prefactors in ten dimensions us-

ing supersymmetry alone. Indeed, only tree-level (e−2φ) and one-loop (constant) terms are

allowed. It would be very interesting to examine the analogous supersymmetry constraints

in four dimensions.

The issue of possible counterterms in maximal N=8 supergravity [42, 43] is under per-

petual investigation. Many of the current arguments rely on (linearized) superspace formu-

lations and nonrenormalization theorems [107, 108], which in turn depend on the existence
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of an off-shell superspace formulation. While it was a common belief for some time that a

superspace formulation of maximally-extended supersymmetric theories could be achieved

employing off-shell formulations with at most half of the supersymmetry realized, an off-

shell harmonic superspace with N=3 supersymmetry for N=4 super-Yang-Mills (SYM)

theory was constructed in [109]. Assuming the existence of a similar description realizing

six of the eight supersymmetries of N=8 supergravity would postpone the onset of possible

counterterms at least to the five-loop level, while realizing seven of eight would postpone it

to the six-loop level [108]. However, an explicit construction of such superspace formalisms

has not yet been achieved in the gravitational case.

Accompanying the above superspace considerations, there are also string- and M-theoretic

arguments for the excellent ultraviolet behavior observed in N=8 supergravity. While a

nonrenormalization theorem developed in the pure spinor formalism for the closed super-

string [110] has been used by Green, Russo and Vanhove [111] to argue that the first

divergence in N=8 supergravity might be delayed until nine loops, an analysis of dualities

and volume-dependence in compactified string theory by the same authors [112] indicates

a divergence already at seven loops. Arguments based on M-theory dualities suggest the

possibility of finiteness to all loop orders [113, 114]. However, the applicability of arguments

based on string and M-theory to N=8 supergravity is subject to resolving the issues related

to the decoupling of massive string states discussed in [115].

5.2 Is supersymmetry sufficient to show the finiteness of N=8 supergrav-

ity?

Besides of the formal considerations described above it is possible to explore the divergence

structure of N=8 supergravity through direct computation of on-shell multi-loop graviton

scattering amplitudes. While the two-loop four-graviton scattering amplitude [116] provided

first hints that the R4 counterterm might have a vanishing coefficient at three loops, the

full three-loop computation demonstrated this vanishing explicitly [117, 118].

A similar cancellation at four loops [119] is not so surprising for the four-point amplitude,

because operators of the form ∂2R4 can be eliminated in favor of R5 using equations of

motion [120]. The R5-term in turn has no N=8 supersymmetric completion [121, 122],

which is in concordance with the absence of R5 terms in the closed-superstring effective

action [123].

Collecting the results from explicit multi-loop calculations, N=8 supergravity ampli-

tudes show an ultraviolet behavior which is even better than finite: it seems to be as good

as for N=4 super-Yang-Mills theory. Besides of explicit calculations, there have been a va-

riety of attempts to understand the ultraviolet structure of N=8 supergravity more directly

at the amplitude level. The most famous result is the “no triangle” hypothesis [47, 124],

which has been proven in [19, 125]. This theorem implies many, though not all, of the can-

cellations seen at higher loops [126]. Whereas some of the observed one-loop cancellations

are not just due to supersymmetry, but to other properties of gravitational theories [127],

others can be related to their non-color-ordered nature [128].
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It is in particular those one-loop considerations and the work of ref. [108], which suggest

that the conjectured finiteness of N=8 supergravity might not be dictated by conventional

N=8 supersymmetry alone. However, since the construction of N=8 supergravity it has

been realized that another symmetry plays a key role — the exceptional, non-compact

symmetry E7(7).

The general role of the E7(7) symmetry, regarding the finiteness of maximal supergravity,

has been a topic of constant discussion. While a manifestly E7(7)-invariant counterterm was

presented long ago at eight loops [101, 129], newer results using the light-cone formalism cast

a different light on the question [130]. In particular, the action of E7(7) on the Lagrangian

in light-cone gauge [131] and covariantly [132, 133] have been studied recently.

Since no supersymmetry argument seems to restrict the appearance of the R4 coun-

terterm, it is suggestive to investigate whether constraints could originate directly from

the exceptional symmetry. As will be explained in detail in the next subsection, the non-

compact part of E7(7) symmetry controls the soft emission of scalars in N=8 supergravity.

In particular there are two distinguished features: the single-soft scalar limit of an ampli-

tude vanishes [28], while the double-soft scalar limit results in a weighted and SU(8)-rotated

sum of amplitudes differing in the number of legs by two [19]. If one could show vanishing of

the single-soft limit and validity of the double-soft limit relation for all amplitudes derived

from a modified N=8 supergravity action, in this case perturbing it by the R4 term, then

this action would be compatible with E7(7).

However, in order for this reasoning to hold, E7(7) should remain a good symmetry at

the quantum level. Although there is evidence in favor of this, no all-order proof is known.

At one loop, the cancellation of anomalies for currents from the SU(8) subgroup of E7(7)

was demonstrated quite a while ago [134]. The analysis was subtle because a Lagrangian

for the vector particles cannot be written in a manifestly SU(8)-covariant fashion. Thus

the vectors contribute to anomalies, cancelling the more-standard contributions from the

fermions. More recently, the question of whether the full E7(7) is a good quantum symmetry

has been re-examined: He and Zhu showed that the infrared-finite part of single-soft scalar

emission vanishes at one loop for an arbitrary number of external legs [135] as it does at

tree level. Earlier, Kallosh, Lee and Rube [136] showed the vanishing of the four-point

one-loop amplitude in the single-soft limit for complex momenta. A similar argument by

Kaplan [137] shows that the double-soft scalar limit relation in N=8 supergravity can also

be extended to one loop. These results support the speculation that the full E7(7) is a good

quantum symmetry of the theory, at least at the one-loop level.

5.3 E7(7) and soft scalar limits

Amplitudes in N=8 supergravity are invariant under SU(8) rotations by construction. On

the other hand, the action of the coset symmetry
E7(7)

SU(8) on amplitudes is not obvious. One

can understand the connection by recalling that the vacuum state of the theory is specified

by the expectation values of the physical scalars. Because the scalars are Goldstone bosons,

their soft emission in an amplitude changes this expectation value and moves the theory to
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another point in the vacuum manifold.

Arkani-Hamed, Cachazo and Kaplan (ACK) [19] provided a very useful tool to investi-

gate how the non-compact part of E7(7) symmetry controls the soft emission of scalars in

N=8 supergravity. Using the BCFW recursion relations [138, 139] they showed how generic

amplitudes with one soft scalar particle vanish as the soft momentum approaches zero,

Mn+1(1, 2, . . . , n+ 1) −−−→
p1→0

0 . (5.8)

This vanishing was first observed by Bianchi, Elvang and Freedman [28] and associated

with the fact that the scalars parameterizing the coset manifold E7(7)/SU(8) obey relations

similar to soft pion theorems [3, 140]. On the other hand, in the case of soft pion emission,

the amplitude can remain nonvanishing as the (massless) pion momentum vanishes, due

to graphs in which the pion is emitted off an external line; a divergence in the adjacent

propagator cancels a power of pion momentum in the numerator from the derivative in-

teraction. In the supergravity case, it was found that the external scalar emission graphs

actually vanish on-shell in the soft limit [28].

Moving on to double-soft emission, several different situations have to be distinguished,

which are labeled by the number of common indices between the sets {a1, a2, a3, a4} and

{a5, a6, a7, a8} of scalar indices in the commutation relation (consult subsection 2.7.2 for a

detailed discussion of the coset structure of N=8 supergravity)31

−i [Xa1...a4
1 ,X2 a5...a8 ] = εb a2a3a4

a5a6a7a8
Ra1

b + εa1b a3a4
a5a6a7a8

Ra1
b + . . . + εa1a2a3a4

a5a6a7b Rb
a8
. (5.9)

Four common indices allow the creation of an SU(8) singlet, corresponding to the emis-

sion of a single soft graviton. This case is not interesting because [X,X] vanishes. Similarly,

if the scalars share one or two indices, the situation corresponds to a single soft limit in one

of the subamplitudes generated by the BCFW recursion relations; thus this limit vanishes

and does not probe the commutator in eq. (5.9). Another way to see the vanishing is to re-

consider eq. (5.9) explicitly: there are simply not enough indices to saturate the right-hand

side. The only interesting configuration occurs if the two generators X1 and X2 (and thus

the scalars X1 and X2) agree on exactly three of their indices32. This result is in accor-

dance with the commutation relation eq. (5.9), where three equal indices are necessary for

the commutator of two non-compact generators to yield a result proportional to an SU(8)

generator.

Performing an explicit calculation of an (n+2)-point supergravity tree amplitude Mn+2

containing two scalars sharing three indices and considering the double-soft limit on X1

and X2 results in the double-soft limit relation [19]

Mn+2(1, 2, . . .) −−−−−→
p1,p2→0

1

2

n+2∑

i=3

pi · (p2 − p1)

pi · (p1 + p2)
R(ηi)Mn(3, 4, . . .) , (5.10)

31As defined after eq. (2.124), ε
a1a2a3a4c
a5a6a7a8b = 1,−1, 0 if the upper index set is an even, odd or no permutation

of the lower set respectively.
32Working in unitary gauge, expressions X for generators and X for scalars can be used equivalently.

However, in amplitudes the X will be used to denote scalar particles although the resulting SU(8) rotation

is of course implied by the commutator of the corresponding generators.
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where

R(ηi)
b
c = R ([Xa1...a4 ,Xa5...a8 ])

b
c = εa1a2a3a4c

a5a6a7a8b × ηic∂ηib
(5.11)

acts on (Mn)cb. The right-most form of the generator is given in parallel to eq. (2.81) in the

on-shell formalism. The n-point amplitudeMn has open SU(8) indices due to the particular

choice of indices of the scalars.

In the double-soft limit (5.10), the amplitude with two soft scalars sharing three indices

becomes a sum of amplitudes with only hard momenta; in each summand one leg gets

SU(8) rotated by an amount depending on its momentum.

The relation (5.10) has been proven by ACK at tree level for pure N=8 supergravity.

In the following subsections suitable α′-corrected amplitudes, derived from an action con-

taining the R4 term, will be constructed. For those amplitudes, the single- and double-soft

limit will be taken numerically in order to test the E7(7) invariance of the R4 counterterm.

5.4 String-theory corrections to field-theory amplitudes

While the relation between open string theory and N=4 SYM theory was discussed on the

level of the action in subsection 3.1.3, the low-energy expansion for amplitudes is necessary

to understand how string theory can help to calculate otherwise unaccessible field theory

amplitudes.

Open-string tree amplitudes An have the same color decomposition (2.85), with ASYM
n

replaced by the color-ordered string subamplitude An. At the four-point level, the two

subamplitudes are related by the Veneziano formula [141],

A4(1
−, 2−, 3+, 4+) = V (4)

open(s1, s2)A
SYM
4 (1−, 2−, 3+, 4+)

=
Γ(1 + α′s1)Γ(1 + α′s2)

Γ(1 + α′s1 + α′s2)
ASYM

4 (1−, 2−, 3+, 4+) . (5.12)

Expanding the form-factor V (4) in powers of α′ in order to single out the low-energy con-

tributions one finds

V (4)
open(s1, s2) = 1 − α′2ζ(2)s1s2 + α′3ζ(3)s1s2(s1 + s2) + O(α′4), (5.13)

where the leading correction to the pure Yang-Mills amplitude arises from the F 4 interaction

term of four gauge field-strength tensors (see subsection 3.1.3).

The full open string amplitude is quite simple in the four-point case (5.12). On the

other hand, its generalizations to more external legs turn out to involve generalized hyper-

geometric functions [142]. Any n-point open string amplitude can be expressed in terms of

(n − 3)! hypergeometric basis integrals. Expanding those functions in powers of α′ yields

expressions for the string-corrected five- and six-point MHV amplitudes

A5 =

[
V (5)

open(sj) −
i α′2

2
ε(1, 2, 3, 4)P (5)

open(sj)

]
ASYM

5

A6 =

[
V (6)

open(sj, tj) −
i α′2

2

5∑

k=1

εkP
(6)
k open(sj , tj)

]
ASYM

6 , (5.14)
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where

ε1=ε(2, 3, 4, 5), ε2=ε(1, 3, 4, 5), ε3=ε(1, 2, 4, 5), ε4=ε(1, 2, 3, 5), ε5=ε(1, 2, 3, 4) .

(5.15)

Expansions in α′ are given by [143]

V (5)
open(si) = 1 − α′2ζ(2)

2
(s1s2 + s2s3 + s3s4 + s4s5 + s5s1)

+
α′3ζ(3)

2

(
s21s2 + s22s3 + s23s4 + s24s5 + s25s1 + s1s

2
2 + s2s

2
3 + s3s

2
4 + s4s

2
5 + s5s

2
1

+ s1s3s5 + s2s4s1 + s3s5s2 + s4s1s3 + s5s2s4
)

+ O(α′4) , (5.16)

P (5)
open(si) = ζ(2) − α′ζ(3)(s1 + s2 + s3 + s4 + s5) + O(α′2) , (5.17)

and explicit expressions for V (6) and P
(6)
k can be found in the same reference.

Stieberger and Taylor have pushed the calculations even further [144]. In the process

of determining all pure-gluon NMHV six-point amplitudes, they computed the following

additional auxiliary amplitudes for helicity configuration X defined in eq. (2.70):

〈φ−φ−φ−φ+φ+φ+〉 , 〈φ−φ−λ−λ+φ+φ+〉 , and 〈φ−φ−g−g+φ+φ+〉 , (5.18)

as well the analogous quantities for Y and Z. As defined in table 1 in subsection 2.6, λ

denotes a gluino and φ a scalar. In order to get an impression of the complexity of the

result, here the pure-gluon NMHV six-point amplitude in helicity configuration X [144] will

be provided, which will be expressed employing the following kinematic variables:

αX = − [12]〈34〉[ 6|X|5〉 , βX = [12]〈45〉[ 6|X|3〉 , γX = [61]〈34〉[2|X|5〉 , (5.19)

where X ≡ p6 + p1 + p2. The subamplitude reads33

A6(g
+
1 , g

+
2 , g

−
3 , g

−
4 , g

−
5 , g

+
6 ) =

1

s5

(
NX

1

α2
X

s21s
2
3

+NX
2

β2
X

s21
+NX

3

γ2
X

s23
+NX

4
αXβX

s21s3
+NX

5
αXγX

s1s23
+NX

6
βXγX

s1s3

)
, (5.20)

where the expansion of the functions NX to O(α′2) is:

NX
1 = −α′2ζ(2) s1s3 + . . . ,

NX
2 =

s1
s2s4t1

− α′2ζ(2)

(
s1s6
s2s4

+
s21
s4t1

+
s1s5
s2t1

)
+ . . . ,

NX
3 =

s3
s2s6t2

− α′2ζ(2)

(
s3s4
s2s6

+
s3s5
s2t2

+
s23
s6t2

)
+ . . . ,

NX
4 = α′2ζ(2)

(
s1t2
s2

+
s1t3
s4

)
+ . . . ,

NX
5 = α′2ζ(2)

(
s3t1
s2

+
s3t3
s6

)
+ . . . ,

NX
6 =

t3
s2s4s6

+ α′2ζ(2)

(
s1 + s3 − s5

s2
− t1t3
s2s4

− t2t3
s2s6

− t23
s4s6

)
+ . . . . (5.21)

33Note the shifted ordering of helicities compared to eq. (2.70). A cyclic shift (1, 2, 3, 4, 5, 6) →

(3, 4, 5, 6, 1, 2) has to be performed in order to match the results analytically with ref. [144].
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As discussed in subsection 3.1.3, the low-energy limit of closed type II string theory

in four dimensions is N=8 supergravity. The first correction to the low-energy effective

action can be determined from the expression for the closed string four-point amplitude, or

Virasoro-Shapiro amplitude [145, 146],

M4(1
−, 2−, 3+, 4+) = V

(4)
closed(s1, s2)M

SUGRA
4 (1−, 2−, 3+, 4+)

=
Γ(1 + α′s1)Γ(1 + α′s2)Γ(1 − α′s1 − α′s2)

Γ(1 − α′s1)Γ(1 − α′s2)Γ(1 + α′s1 + α′s2)
MSUGRA

4 (1−, 2−, 3+, 4+) .

(5.22)

The expansion of V
(4)
closed has the first nonvanishing correction at O(α′3),

V
(4)
closed(s1, s2) = 1 + 2α′3ζ(3) s1s2(s1 + s2) + O(α′4) , (5.23)

which corresponds to a supersymmetrized version of eq. (5.6) in the low energy effective

action (cf. subsection 3.1.3). In other words, keeping terms up to order O(α′3) in the

closed-string amplitudes is equivalent to working with a theory whose effective action is

given by

Scorr =

∫
d4x

√−g(R + α′3R4) + O(α′4) . (5.24)

Below it will turn out that the investigation of the double-soft scalar limit requires at

least six-point NMHV amplitudes in R4-modified N=8 supergravity. While α′-corrected

six-point amplitudes in open string theory (N=4 SYM) are already very cumbersome to

calculate, the situation is even worse for closed string theory (N=8 supergravity). For

higher-point tree amplitudes it is therefore more convenient to rely on the KLT relations

(subsection 3.1.2), which express closed string amplitudes as simple quadratic combinations

of open string amplitudes.

As discussed in subsection 2.8, different cyclic orderings are required as input to the

KLT relations. All possible different cyclic orderings are available for the open-string six-

point amplitudes34 computed in (5.18). However, the limited number of explicit open-

string amplitude calculations constrains the available supergravity amplitudes. Thus the

α′-corrected N=8 supergravity amplitude has to be chosen carefully, which will be discussed

in the next subsection.

5.5 Setting up the calculation

Arkani-Hamed, Cachazo and Kaplan have proven eq. (5.10) analytically, by employing

BCFW recursion relations for N=8 supergravity with E7(7) realized on-shell. Because

invariance under E7(7) is a necessary condition for the relation to be valid, eq. (5.10) provides

a useful tool for testing other theories, or operators, for their symmetry properties under

E7(7). In particular, if the double-soft limit of all (n + 2)-point amplitudes derived from

34I am grateful to Stephan Stieberger and Tomasz Taylor for providing me with expressions for the

amplitudes from ref. [144] through order α′3.
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eq. (5.24) coincides with the SU(8)-rotated sum of the corresponding n-point amplitudes,

that would be strong evidence that E7(7) symmetry does not restrict the appearance of R4

as a counterterm in N=8 supergravity.

The analytical approach that ACK used to prove eq. (5.10) does not hold for the α′-

corrected N=8 amplitudes. Higher-dimension operators lead to poorer large-momentum

behavior, so that amplitudes shifted by large complex momenta will not fall off fast enough

for the BCFW recursion relations to be valid. Instead one has to find explicit lengthy

expressions for suitable string theory amplitudes, from which the α′-corrected amplitudes

corresponding to eq. (5.24) can be deduced, and their double-soft limits inspected numeri-

cally.

After discussing the low-energy-expansion of KLT relations, the constraints on the α′-

corrected N=8 supergravity amplitude originating from the single- and the double-soft

limit relation eq. (5.10) in subsection 5.5.1 will be explored. Appropriate N=8 amplitudes

will be identified and decomposed into N=4 SYM matrix elements using the KLT relations.

The required α′-corrected N=4 SYM matrix elements can be related to the available open

string amplitudes by carefully examining the NMHV supersymmetric Ward identities. In

subsections 5.5.2 and 5.5.3, the N=1 supersymmetric Ward identities will be reviewed in

detail and used to obtain expressions for the N=4 amplitudes, which finally serve as input

to the KLT relations, in subsection 5.6.

As discussed in subsection 3.1.2, equalities (3.10-3.12) are exact relations between string

theory amplitudes, and so they are valid order by order in α′. In order to calculate the

string correction to an N=8 supergravity amplitude at a certain order in α′ from known

α′-corrected expressions in N=4 SYM, one has to determine all combinations of terms from

the expansions of the amplitudes and the sine functions, whose multiplication results in the

correct power of α′. For instance the second-order correction to the five-point amplitude

in supergravity corresponds to terms of O(α′4), due to the prefactor of 1
α′2 . Taking the

absence of first-order corrections to N=4 SYM amplitudes into account, four combinations

have to be considered in eq. (3.11), according to the following table:

sin(α′πs12) sin(α′πs34) A5(1, 2, 3, 4, 5) A5(2, 1, 4, 3, 5)

O(α′1) O(α′1) O(α′0) O(α′2)

O(α′1) O(α′1) O(α′2) O(α′0)

O(α′3) O(α′1) O(α′0) O(α′0)

O(α′1) O(α′3) O(α′0) O(α′0)

yielding

M
O(α′2)
5 = is12s34

[
ASYM

5 (1, 2, 3, 4, 5)A
O(α′2 )
5 (2, 1, 4, 3, 5)

+A
O(α′2)
5 (1, 2, 3, 4, 5)ASYM

5 (2, 1, 4, 3, 5)

−π2

6 (s212 + s234)A
SYM
5 (1, 2, 3, 4, 5)ASYM

5 (2, 1, 4, 3, 5)
]

+ P(2, 3) . (5.25)

The above expression can be shown to vanish analytically, in accordance with the higher-

point generalization of eq. (5.23), or alternatively eq. (5.24), the statement that the first
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correction to the closed-string effective action is at O(α′3).

5.5.1 Choosing a suitable amplitude

The simplest scenario one might think of, in order to test the double-soft scalar limit

relation (5.10), is to start with a five-point amplitude, which in turn leads to a sum of

three-point amplitudes on the right-hand side of the relation. Three-point amplitudes are

special as they require a setup with complex momenta in order to be non-trivial. However,

here another constraint has to be taken into account: amplitudes shall be tested that

receive nonvanishing corrections from the R4 term. Because the interactions originating

in this counterterm candidate start at the four-point level, it is not sufficient to consider

three-point amplitudes on the right-hand side.

Therefore the investigation has to be performed for at least six-point amplitudes, which

should reduce to a sum of four-point amplitudes in the double-soft limit. Requiring again

that the four-point amplitudes on the right-hand side of eq. (5.10) are nonvanishing im-

plies that they are MHV (or equivalently anti-MHV). Fortunately, corrections to all MHV

amplitudes with four legs are known up to O(α′3), indeed to arbitrary order in α′, using

eq. (5.22) and the MHV supersymmetry Ward identities.

On the left-hand side of eq. (5.10) the situation is more intricate. The four particles

that appear already on the right-hand side are now accompanied by two additional scalars.

According to eq. (2.129), the number of η derivatives acting on the generating functional

is increased by eight, four for each scalar, so that the resulting amplitude resides in the

NMHV sector. In addition, the two scalars have to share three SU(8) indices, as elaborated

on in subsection 2.7.2. Sorting out the distribution of the scalars’ indices into two SU(4)

subgroups, there are finally five possible distinct choices35 satisfying the constraints. They

are listed here, together with their respective KLT decompositions according to table 3 in

subsection 2.8:

〈XabrsXabrt · · · · 〉 → 〈φab φab · · · · 〉L × 〈φrs φrt · · · · 〉R, (5.26)

〈XabrcXabrs · · · · 〉 → 〈εabcdλ−d φab · · · · 〉L × 〈λr+ φrs · · · · 〉R, (5.27)

〈XabrcXabrd · · · · 〉 → 〈λ−d λc+ · · · · 〉L × 〈λr+ λ−r · · · · 〉R, (5.28)

〈XabcrXabcs · · · · 〉 → 〈λ−d λd+ · · · · 〉L × 〈λr+ λ−s · · · · 〉R, (5.29)

〈XabcdXabcr · · · · 〉 → 〈g− λd+ · · · · 〉L × 〈g+ λ−r · · · · 〉R . (5.30)

Here the ellipses are understood to be filled with four particles such that the L- and R-

amplitudes on the right-hand side of the KLT relation each transform as an SU(4) singlet.

In each of equations (5.28) to (5.30) a factor of εabcdεabcd was left out. Because these indices

are not summed over, this factor is equal to unity. Note that 〈XabcdXabce · · · · 〉 is absent

because the five SU(4) indices a, b, c, d, e cannot be made all distinct.

In order to proceed, supersymmetric Ward identities have to be used to relate one

of the five decompositions (5.26)–(5.30) to the available open-string six-point results (see

35Another five combinations can be obtained by switching the left and right SU(4).
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eq. (5.18) in section 5.4):

〈g− g− g− g+ g+ g+〉 , 〈φ− φ− φ− φ+ φ+ φ+〉,
〈φ− φ− λ− λ+ φ+ φ+〉 and 〈φ− φ− g− g+ φ+ φ+〉 . (5.31)

Supersymmetric Ward identities can be classified by the amount of supersymmetry em-

ployed (e.g., N=1, 2, 4), as well as the number of legs and the sector (MHV, NMHV,

etc.) characterizing the amplitudes. Dealing with six-point NMHV amplitudes exclusively

below, the notation N=4 SWI will refer to the set of supersymmetric Ward identities re-

lating six-point NMHV amplitudes built from the full N=4 multiplet (g±, λ±m, φ
±
n ), where

m = 1, 2, 3, 4 and n = 1, 2, 3. (Note that a superscript ± on φ implies a complex field with

a index labeling different from the real φab used above.) In the original article [144], N=2

supersymmetric Ward identities have been served to relate the latter three amplitudes in

eq. (5.31) to the pure-gluon one. So the obvious idea is to search among the decomposi-

tions (5.26)–(5.30) for one in which the amplitudes contain particles from a single N=2

multiplet and its CPT conjugate, (g±, λ±m, φ
±) with m = 1, 2.

However, the third amplitude in eq. (5.31) contains only one type of fermion, which

points into the direction of a N=1 multiplet. Setting up the calculation employing N=1

SWI exclusively is simpler than using N=2 SWI: for six-point NMHV amplitudes an explicit

solution to the N=1 SWI is known [21, 28].36

The decompositions (5.26) to (5.30) are not all equally suited to the use of an N=1

SWI. For example, the left SU(4) amplitude of eq. (5.27) contains three distinct SU(4)

indices, a, b, d, thus requiring a full N=4 multiplet. The other four decompositions contain

amplitudes which can be constructed from SWI with less supersymmetry. Indeed, the

decomposition (5.30) contains only one index for the left SU(4) amplitude, and one for the

right one; this decomposition is the one which will be used in the following subsections.

As will be explained below, it is possible to obtain everything necessary for testing the

single- and double-soft limit through eq. (5.30), by using a two-step procedure employing

two different sets of N=1 SWI based on the multiplets (g±, λ±) and (φ±, λ±).

The next three paragraphs elaborate on the N=1 NMHV SWI for (g±, λ±) in particular,

and then describe the analogous set of N=1 SWI for the multiplet (φ±, λ±). Then, in

subsection 5.6, these ingredients will be assembled in order to test the E7(7) symmetry.

5.5.2 N=1 supersymmetric Ward identities in the NMHV sector

As an example, the set of amplitudes involving four gluons (g+, g−) and a single pair of

gluinos (λ+, λ−) shall be investigated. For simplicity, the SU(4) index will be dropped.

36Very recently the supersymmetric Ward identities in maximally supersymmetric N=4 super-Yang-Mills

theory and N=8 supergravity were solved, for arbitrary n-point NpMHV amplitudes [147] in terms of basis

amplitudes, in a manifestly supersymmetric form. These results may prove very useful in extending the

considerations of this paper to a larger number of legs.
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The states are related by N=1 supersymmetry via

[
Q(ξ), g+(p)

]
= [pξ]λ+(p),

[
Q(ξ), λ+(p)

]
= −〈pξ〉g+(p),

[
Q(ξ), g−(p)

]
= 〈pξ〉λ−(p),

[
Q(ξ), λ−(p)

]
= − [pξ] g−(p), (5.32)

where Q(ξ) = 〈Qξ〉 as defined in subsection 2.5.

For each NMHV helicity sector, there are 20 distinct amplitudes related by N=1 SWI:

a pure-gluon amplitude, a pure-gluino amplitude, nine two-gluino four-gluon amplitudes,

and nine four-gluino two-gluon amplitudes, as shown in figure 3. In the following, ampli-

tudes drawn from helicity configuration X in eq. (2.70) are discussed. For the two other

configurations Y and Z, the relations are completely analogous.

〈g− g− g− g+ g+ g+〉

〈λ− g− g− λ+ g+ g+〉 · · · 〈g− λ− g− g+ λ+ g+〉 · · · 〈g− g− λ− g+ g+ λ+〉

〈λ− λ− g− λ+ λ+ g+〉 · · · 〈λ− g− λ− λ+ g+ λ+〉 · · · 〈g− λ− λ− g+ λ+ λ+〉

〈λ− λ− λ− λ+ λ+ λ+〉

Figure 3: Amplitudes related by N=1 supersymmetric Ward identities.

Amplitudes in adjacent rows of figure 3 are related by the N=1 SWI. Acting for example

with the supersymmetry operator Q(ξ) on the source term 〈g− g− g− λ+ g+ g+〉 yields

〈4η〉〈g− g− g− g+ g+ g+〉 − 〈1η〉〈λ− g− g− λ+ g+ g+〉
− 〈2η〉〈g− λ− g− λ+ g+ g+〉 − 〈3η〉〈g− g− λ− λ+ g+ g+〉 = 0 , (5.33)

which relates the pure-gluon amplitude to the two-gluino four-gluon ones from the second

row in figure 3. Due to the freedom in choosing the two-component supersymmetry param-

eter η, the result is a system of equations which has rank 2. In order to find all relations

between the pure gluon amplitude (first row) and the amplitudes in the second row, the

action of Q(ξ) on all possible source terms featuring one gluino and five gluons,

〈λ− g− g− g+ g+ g+〉, 〈g− λ− g− g+ g+ g+〉, 〈g− g− λ− g+ g+ g+〉,
〈g− g− g− λ+ g+ g+〉, 〈g− g− g− g+ λ+ g+〉, 〈g− g− g− g+ g+ λ+〉, (5.34)

has to be considered. The resulting system, linking ten amplitudes from the first and second

rows, turns out to have rank eight, thus requiring two known amplitudes in order to derive

all the others.

Repeating the analysis for the second and third rows, there are notably more identities

to consider. They are generated by acting with Q(ξ) on any of the 18 different source
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terms built from three gluinos and the same number of gluons, e.g. 〈λ− λ− g− g+ λ+ g+〉.
Interestingly this system connecting 18 unknown amplitudes is of rank 16, meaning that

again two amplitudes have to be known in order to fix all the others.

Finally, the relations between the third row and the pure-gluino amplitude (fourth row)

mirror the situation found for the top of the diagram and are also of rank eight.

Combining all of the above into one large system of equations, the total rank of the

supersymmetric Ward identities pictured in figure 3 turns out to be 18. So, given any

two of the 20 distinct amplitudes, one can calculate any other from this set employing

the complete collection of N=1 SWI. The corresponding result has already been found

by Grisaru and Pendleton in the context of N=1 supergravity [21], and recast recently in

modern spinor-helicity form [28].

More explicitly, any two-gluino four-gluon amplitude Fi,I , with the gluinos situated at

positions i and I, can be expressed in terms of the pure-gluon and pure-gluino amplitude

as

Fi,I =
4〈Ij〉[ij]〈g−g−g−g+g+g+〉 − εijk〈jk〉εIJK [JK]〈λ−λ−λ−λ+λ+λ+〉

−2
∑

m,n∈{i,j,k}〈mn〉[nm]
, (5.35)

where i, j, k and I, J,K mark the set of negative and positive helicity particles respectively,

and the numerator contains implicit sums over j, k, J,K. For example,

F3,4 = 〈g−g−λ−λ+g+g+〉 =
〈4|(1 + 2)|3]〈g−g−g−g+g+g+〉 + 〈12〉[56]〈λ−λ−λ−λ+λ+λ+〉

t1
.

(5.36)

A similar formula for all four-gluino two-gluon amplitudes can be found in the appendix of

ref. [28].

5.5.3 The second N=1 SUSY diamond

Recall [144] that the pure-gluon amplitude can be calculated from the latter three ampli-

tudes in eq. (5.31), namely

〈φ−φ−φ−φ+φ+φ+〉, 〈φ−φ−λ−λ+φ+φ+〉 and 〈φ−φ−g−g+φ+φ+〉 . (5.37)

The question that immediately arises is whether this set forms a basis for the complete

set of all six-point NMHV N=2 amplitudes37 in helicity configuration X? Having not

been aware of a direct answer to that question, the following approach was: as mentioned

already in subsection 5.5.1, a second set of six-point NMHV N=1 supersymmetric Ward

identities was employed in addition to the N=1 SWI for (g±, λ±) described in the previous

subsection.

In figure 4 the collection of six-point NMHV N=2 amplitudes is depicted in helicity

configuration X. Every black dot denotes a particular amplitude. The top point repre-

sents the pure-gluon amplitude 〈g−g−g−g+g+g+〉, the lowest point refers to the pure-scalar

37The term N=2 amplitudes refers to all possible amplitudes that can be constructed exclusively from

particles from a single N=2 multiplet and its CPT conjugate, (g±, λ±
m, φ±) with m = 1, 2 [148].
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b

b

b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

N=2

N=1

N=1

〈g−g−g−g+g+g+〉
〈g−g−λ−λ+g+g+〉
〈g−λ−λ−λ+λ+g+〉
〈λ−λ−λ−λ+λ+λ+〉
〈φ−λ−λ−λ+λ+φ+〉
〈φ−φ−λ−λ+φ+φ+〉
〈φ−φ−φ−φ+φ+φ+〉

Figure 4: Amplitudes involving particles from a single N=2 multiplet containing two N=1 subsets.

amplitude 〈φ−φ−φ−φ+φ+φ+〉, and the central point denotes the pure-gluino amplitude

〈λ−λ−λ−λ+λ+λ+〉. Supersymmetric Ward identities relate certain amplitudes from adja-

cent rows and the elements of eq. (5.31) are encircled. The upper diamond-shaped region

corresponds precisely to figure 3: it is the subset of six-point NMHV N=1 amplitudes built

from the multiplet (g±, λ±) within the N=2 amplitudes. (There are additional states in

the full N=2 diamond in figure 4, of course, even in the second row.)

However, the upper diamond-shaped region is not the only subset of six-point NMHV

N=2 amplitudes which can be related by N=1 supersymmetric Ward identities. Stretching

between the pure-gluino and the pure-scalar amplitude there is a second region (referred

to as the lower diamond in the following), which satisfies relations similar to those in the

upper N=1 diamond. The modified supersymmetry operator Q̃ will now act on a multiplet

consisting of scalars (φ+, φ−) and gluinos (λ+, λ−) via

[
Q̃(ξ), φ+(p)

]
= 〈pξ〉λ+(p),

[
Q̃(ξ), λ+(p)

]
= − [pξ]φ+(p),

[
Q̃(ξ), φ−(p)

]
= [pξ]λ−(p),

[
Q̃(ξ), λ−(p)

]
= −〈pξ〉φ−(p) , (5.38)

which can be easily derived by identifying the supercharges of N=2 supersymmetry, Q1

and Q2, with Q and Q̃ respectively.

Writing down the set of supersymmetric Ward identities generated by acting with a

supersymmetry generator Q̃ on the source term 〈φ−φ−φ−λ+φ+φ+〉, one encounters the

same structure derived in eq. (5.33):

[4η]〈φ−φ−φ−φ+φ+φ+〉 − [1η]〈λ−φ−φ−λ+φ+φ+〉
− [2η]〈φ−λ−φ−λ+φ+φ+〉 − [3η]〈φ−φ−λ−λ+φ+φ+〉 = 0. (5.39)

In fact, one can show that the complete system of supersymmetric Ward identities and am-

plitudes for the lower diamond, ranging from the pure-gluino to the pure-scalar amplitude,
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can be obtained from the original N=1 system considered in figure 3 by exchanging

Q ↔ Q̃

[ ] ↔ 〈 〉
g+ ↔ φ+

g− ↔ φ−. (5.40)

This symmetry corresponds geometrically to reflecting figure 4 about a horizontal line

passing through the central point 〈λ−λ−λ−λ+λ+λ+〉.
The second system of supersymmetric Ward identities in the lower diamond is obviously

of the same rank as the original system. However, in contrast to the upper diamond it

contains now two of the known amplitudes from ref. [144],

〈φ−φ−φ−φ+φ+φ+〉 and 〈φ−φ−λ−λ+φ+φ+〉 , (5.41)

which allows the calculation of any other amplitude in the lower N=1 set. In particular, the

pure-gluino amplitude 〈λ−λ−λ−λ+λ+λ+〉 ( in figure 4), which is the element connecting

the upper and lower set of equations, can be determined. Having done so, there are now

two known amplitudes from the upper N=1 diamond, the pure-gluino and the pure-gluon

amplitude [144], which in turn is the precondition for determining any amplitude from the

upper N=1 region. In other words: any six-point NMHV amplitude in the two shaded

regions in figure 4 can be calculated from eq. (5.31).

In the next section, the ellipses on the left-hand side of the decomposition (5.30) will

be completed by two gravitini and two gravitons. The resulting amplitude will be KLT

factorized in such a way that the desired six-point closed-string (N=8 supergravity) am-

plitude can be related to a set of two-gluino four-gluon N=4 SYM amplitudes. The SYM

amplitudes are available in turn by the two-step procedure described above.

5.6 E7(7) symmetry for α
′-corrected amplitudes?

As explained in the last section, the most accessible way of testing the double-soft scalar

limit relation is to calculate the N=8 supergravity amplitude,

〈X1234 X1235 F
5+F−

4 B+B−〉 = KLT
[
〈g− λ4+ g+ λ−4 g

+ g−〉L × 〈g+ λ−5 λ
5+ g− g+ g−〉R

]
,

(5.42)

a particular version of eq. (5.30). The determination of the right-hand side of eq. (5.42)

will be done by employing the two-step procedure described in the last subsection.

How is it possible to obtain the pure-gluino amplitude 〈λ−λ−λ−λ+λ+λ+〉 from the

amplitudes in eq. (5.41) in the first step? An expression relating any six-point NMHV

two-fermion four-boson amplitude to the pure-fermion and pure-boson one has been given

in eq. (5.35). Starting from eq. (5.36), employing the correspondence eq. (5.40) which

transforms the pure-gluon amplitude into the pure-scalar one, and solving the resulting
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equation for the pure-gluino amplitude yields

〈λ−λ−λ−λ+λ+λ+〉 =
(k1 + k2 + k3)

2〈φ−φ−λ−λ+φ+φ+〉 − 〈3|(1 + 2)|4]〈φ−φ−φ−φ+φ+φ+〉
〈56〉[12] .

(5.43)

In the second step, eq. (5.35) will be used to obtain analytical expressions for all two-gluino

four-gluon amplitudes, allowing the assembly of the N=8 amplitude finally.

In the same manner as explained in subsection 5.5 for the expansion to O(α′2) of a

five-point gravity amplitude, appropriate combinations of orders in α′ have to be added

and permuted on the right-hand side of eq. (5.42) in order to obtain the result including

the R4 perturbation. Explicitly, the third order in α′ can be obtained by evaluating

M
O(α′3)
6 = −is12s45

(
ASYM

6 (1, 2, 3, 4, 5, 6)

×
[
s35A

O(α′3)
6 (2, 1, 5, 3, 4, 6) + (s34 + s35)A

O(α′3)
6 (2, 1, 5, 4, 3, 6)

]

+A
O(α′3)
6 (1, 2, 3, 4, 5, 6)

×
[
s35A

SYM
6 (2, 1, 5, 3, 4, 6) + (s34 + s35)A

SYM
6 (2, 1, 5, 4, 3, 6)

])

+ P(2, 3, 4) . (5.44)

All amplitudes needed on the right-hand side of eq. (5.44) are two-gluino four-gluon ampli-

tudes for the helicity configurations X, Y or Z, which have been related by supersymmetry

to the amplitudes considered in ref. [144].

Before discussing the double-soft limit relation, the single-soft limit will be examined in

order to see whether the vanishing (5.8) observed in N=8 supergravity still holds for the

R4 matrix elements. For the four-point amplitude, the factor of s1s2(s1 + s2) in the O(α′3)

term in V
(4)
closed in eq. (5.23) shows that the R4 matrix element vanishes at least as fast as

the supergravity amplitude. Similarly, using the forms (5.14) for the open string five- and

six-point MHV amplitudes, together with the appropriate KLT relations, it can be shown

numerically that the single-soft limit of the five- and six-point MHV matrix elements of

R4 vanish. That is, a sequence of kinematical configurations with the momentum of the

scalar tending to zero is constructed, for which the R4 matrix elements vanish linearly. In

the MHV case, it is sufficient to test the single-soft vanishing for one particular amplitude

containing scalars, because all other MHV amplitudes are related by SWI involving ratios

of spinor products that are constant in the soft limit.

On the other hand, examining non-MHV six-point R4 matrix elements (5.44) numer-

ically, one finds that the single-soft limit does not vanish.38 The question is whether this

implies the breaking of E7(7) symmetry by the R4 term. In principle there could be modifi-

cations to the external scalar emission graphs that still allowed the symmetry to be intact

(as happens in the pion case). However, the R4 term does not produce any nonvanishing

on-shell three-point amplitudes. So it seems that the E7(7) symmetry is indeed broken,

beginning at the level of the non-MHV six-point amplitude.

38Thanks to Juan Maldacena for suggesting to examine this limit, and for related discussions.
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One might wonder why the breaking shows up only at this level. Considering the ten-

dimensional term e−2φt8t8R
4 discussed in the introduction, which becomes e−6φt8t8R

4 after

transforming to Einstein frame, one might suspect a violation of the single-soft limit from

the non-derivative φ coupling already at the five-point level, expanding e−6φ = 1−6φ+ . . .,

and with R4 producing two negative and two positive helicity gravitons. However, in four

dimensions, the dilaton belongs to the 70 of SU(8), while the gravitons are singlets, so

an amplitude of the form 〈φB−B−B+B+〉 is forbidden by SU(8). Adding another scalar

corresponds to providing a quadratic SU(8)-invariant scalar prefactor for R4, and first

affects NMHV six-point amplitudes.

Despite the apparent breaking of the E7(7) symmetry exhibited by the single-soft limit

of the NMHV six-point amplitude 〈X1234 X1235 F
5+F−

4 B+B−〉 at O(α′3), the double-

soft limit of this amplitude will now be examined. Given the particular choice of am-

plitude (5.42), it is straightforward to find an expression for the right-hand side of (5.10).

The operator

R4
5 = ε1234512354 ηi5∂ηi4 = − ηi5∂ηi4 (5.45)

will act on the remnant of the six-point amplitude as

−
6∑

i=3

ηi5∂ηi4〈F 5+F−
4 B+B−〉

=

6∑

i=3

ηi5∂ηi4

(
∂

∂η35

)(
1

7!
ε12345678

∂7

∂η41 . . . ∂η43∂η45 . . . ∂η48

)

×
(

1

8!
ε12345678

∂8

∂η61 . . . ∂η68

)
ΩSUGRA

4

= 〈F 4+F−
4 B+B−〉 − 〈F 5+F−

5 B+B−〉 . (5.46)

Acting on particle 3, the operator changes the derivative with respect to η35 into a derivative

with respect to η34, thus effectively transforming the positive helicity gravitino F 5+ into

F 4+. Correspondingly, by acting on particle 4, again a derivative with respect to η45 will

be changed into one with respect to η44, this time transforming F−
4 into F−

5 .

Restoring the kinematical weight factors in eq. (5.10), the final comparison of the double-

soft scalar limit will be made according to the following formula:

〈X1234 X1235 F
5+F−

4 B+B−〉
∣∣∣
O(α′3)

−→

1

2

[
p3 · (p2 − p1)

p3 · (p1 + p2)
〈F 4+F−

4 B+B−〉
∣∣∣
O(α′3)

− p4 · (p2 − p1)

p4 · (p1 + p2)
〈F 5+F−

5 B+B−〉
∣∣∣
O(α′3)

]
. (5.47)

Given the complexity of the higher-order α′ corrections in the available amplitudes (see e.g.

eq. (5.20) at only O(α′2)), the analytical computation of the left-hand side of eq. (5.47) is

very cumbersome. Instead, the computation and comparison have been performed numer-

ically for a sufficient number of kinematical points.
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For reference, numerical values at one sample double-soft kinematical point, with all

outgoing momenta fulfilling p2
i = 0 and

∑6
i=1 p

µ
i = 0 are given below:

p1 = (−0.853702542142, +0.696134406758, −0.306157335124, +0.387907984368) × 10−4,

p2 = (+0.711159367201, −0.099704627834, −0.295472686856, +0.639142021830) × 10−4,

p3 = (+0.818866370407, +0.408234512914, −0.661447772542, −0.257630664418),

p4 = (−1.098195656456, −0.551965696904, −0.598319787466, +0.737143813124),

p5 = (−0.618073260483, +0.143671541012, +0.362410922160, −0.479615853707),

p6 = (+0.897416800850, +0.000000000000, +0.897416800850, +0.000000000000).

(5.48)

At this kinematical point, with a particular external-state phase convention, the left- and

right-hand sides of the supergravity (O(α′0)) version of the formula (5.47) are given respec-

tively by

−0.30572232 − i 0.89270274 ≈ −0.30615989 − i 0.89271337 , (5.49)

while the desired O(α′3) terms in eq. (5.47) are,

3.08397954 + i 9.00278816 ≈ 3.08775134 + i 9.00339016 . (5.50)

The difference between the left- and right-hand sides is due merely to the finite separation

of the point (5.48) from the double-soft limit. It can be made as small as desired by working

closer to the limit, using higher precision kinematics to avoid roundoff error.

The result is surprising: for any double-soft kinematical configuration considered, the

left- and the right-hand side of eq. (5.47) show complete agreement within numerical errors.

Given the available amplitudes from the two shaded regions in figure 4, one can perform

further tests for other N=8 amplitudes. In addition to eq. (5.47), the double-soft scalar

limit has been tested for the following amplitudes

〈X1234 X1235 F
5+ F−

4 F 4+ F−
4 〉
∣∣∣
O(α′3)

−→

1

2

[
+
p3 · (p2 − p1)

p3 · (p1 + p2)
〈F 4+F−

4 F
4+F−

4 〉
∣∣∣
O(α′3)

− p4 · (p2 − p1)

p4 · (p1 + p2)
〈F 5+F−

5 F
4+F−

4 〉
∣∣∣
O(α′3)

− p6 · (p2 − p1)

p6 · (p1 + p2)
〈F 5+F−

4 F
4+F−

5 〉
∣∣∣
O(α′3)

]
(5.51)

and

〈X1234 X1235X
1235 X1235 X

1235 X1234〉
∣∣∣
O(α′3)

−→

1

2

[
+
p3 · (p2 − p1)

p3 · (p1 + p2)
〈X1234 X1235 X

1235 X1234〉
∣∣∣
O(α′3)

+
p5 · (p2 − p1)

p5 · (p1 + p2)
〈X1235 X1235X

1234 X1234〉
∣∣∣
O(α′3)

− p6 · (p2 − p1)

p6 · (p1 + p2)
〈X1235 X1235X

1235 X1235〉
∣∣∣
O(α′3)

]
. (5.52)
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Each limit shows complete agreement for any double-soft kinematical point tested.

5.7 Discussion

The computation shows that the double-soft limit of three distinct six-point O(α′3)-corrected

N=8 matrix elements yields the corresponding weighted sum of four-point amplitudes, pre-

cisely as dictated by E7(7) invariance [19]. However, this is quite puzzling, given the nonvan-

ishing single-soft limits of the same six-point amplitudes. The most likely possibility seems

to be that the double-soft limits will begin to fail, but only beginning with the NMHV

seven-point amplitudes. It would be very interesting to test this limit, but that is beyond

the scope of this thesis.

Whether the three-loop cancellations [117, 118] can be explained by a simple symmetry

argument that originates in the
E7(7)

SU(8) coset symmetry of N=8 supergravity remains still

open. The results from the preceding subsections suggests that the R4 term produced

by tree-level string theory can be ruled out in this way, but other dependences on scalars

should be considered. The work of Green and Sethi [106] in ten dimensions indicates that

supersymmetry may forbid any R4 term, but an argument using supersymmetry directly

in four dimensions would be very welcome.

Of course, there are higher-dimension potential counterterms than R4, which are rele-

vant beginning at five loops. It is possible that E7(7) and/or supersymmetry can be used

to exclude these counterterms as well, up to a certain dimension or loop order. How-

ever, at eight loops a counterterm exists that is invariant under both supersymmetry and

E7(7) [101, 129]. It is still possible that E7(7) plays a more subtle role in the excellent

ultraviolet behavior of the theory, perhaps by relating somehow the coefficients of certain

loop integrals making up the full multi-loop amplitude.

Completely understanding the role of E7(7) will very likely be part of a fundamental

explanation of the conjectured finiteness of N=8 supergravity. However, whether super-

symmetry and the coset symmetry alone are sufficient ingredients remains to be shown.
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6 Mapping IR equations and dual conformal constraints to

generalized residue theorems

Leading singularities (see subsection 3.3.1) in N=4 SYM theory can be related to each other

by infrared (IR) equations [36, 34, 35] for all loop orders. As discussed in subsection 2.6.4,

at one-loop level these equations are simple linear relations among various box coefficients

(or one-loop leading singularities) and the tree amplitude39. One-loop IR equations in turn

are part of the constraints implied by the anomalous dual conformal symmetry [38, 39] as

elucidated in subsection 2.6.5.

In [87], evidence has been put forward that the one-loop IR equations of N=4 SYM can

be traced back to general residue theorems (GRT) (cf. subsection 3.3.6) in the Grassman-

nian description of N=4 SYM. As explained in subsection 3.3, in this formalism leading

singularities are expressed as residues of the multi-dimensional complex contour integral

Ln;k(Za) =
1

vol(GL(k))

∫
dk×nCαa

(12 · · · k) (23 · · · (k + 1) ) · · · (n1 · · · (k − 1) )

k∏

α=1

δ4|4(CαaZa) .

(6.1)

Starting from known IR equations and expressing the leading singularities in terms of

residues of eq. (6.1), it was shown for a couple of examples that those equations indeed can

be traced back to GRTs. Despite these promising results, a general map between one-loop

IR equations and GRTs has been missing so far. This map and its extension to the full set

of one-loop dual conformal constraints is proposed below.

Although it is very likely that the map between one-loop dual conformal constraints

and GRTs holds beyond the NMHV sector, the considerations in this section will be lim-

ited to NMHV amplitudes. In this situation, any integration contour for the evaluation

of the Grassmannian integral is in one-to-one correspondence with a certain choice of de-

nominator factors in eq. (6.1) to be set to zero. Starting from the N2MHV level, a choice

of vanishing minors does not determine a residue uniquely. Thus this identification can

not be made straightforwardly any more. In addition, in the NMHV situation a definite

map between one-loop leading singularities and residues is known, while beyond NMHV a

complete identification has not yet been achieved.

One should note that only a subset of all available GRTs is used to derive all one-loop

dual conformal constraints. Since it is now clear [149, 150] that residues in Grassmannian

formulation correspond to all-loop leading singularities, some GRTs should have interpre-

tations as relations involving higher-loop leading singularities. In order to map all one-loop

constraints onto leading singularities, one needs to decide which residue occurs as a con-

tribution to a leading singularity at a certain loop level first. Here the invariant label

introduced below will serve as a criterion, while a similar classification has been performed

by considering the twistor support of leading singularities in [150]. In the same reference it

was shown that NMHV leading singularities can maximally occur at three-loop level.

39The tree amplitude can be considered as a special version of a leading singularity.
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By systematically translating all box coefficients appearing in one-loop dual conformal

constraints into residues in the Grassmannian formulation, it is indeed possible to find a

general map between all one-loop dual conformal constraints and combinations of GRTs in

the NMHV sector. In the same manner one can work out a general formula delivering the

GRTs corresponding to the one-loop IR equations. Finally, the mapping is rounded off by

identifying a mechanism which provides the highly nontrivial identities relating the BCFW

and the P(BCFW) representations of the NMHV tree amplitude.

It is difficult to generalize the result to higher-loop level. The absence of a general notion

for an integral basis, already seen at two loops, results in the lack of a clear identification

of dual conformal constraints and IR equations beyond one-loop. While there are definitely

additional relations originating in GRTs which correspond to these higher-loop constraints,

the identification and exploration of those structures is left for future considerations.

6.1 Classification of residues

As discussed in subsection 3.3.3 above, any residue of an n-point NMHV amplitude is

labeled by n− 5 numbers determining the minors to be set to zero in eq. (3.105).

Employing the identifications eqs. (3.118) and (3.119), one can single out all residues

which appear in the one-loop leading singularities. This will also include the constituents of

the tree amplitude, as those are related to the one-loop leading singularities by eq. (2.107).

For n ≤ 7 this covers all possible residues.

Starting from n = 8, there are residues which only contribute to at least two-loop leading

singularities, but do not participate in any one-loop leading singularities [87]. However,

residues occurring already in one-loop singularities can contribute to two-loop (and higher)

leading singularities.

As argued in [150], certain residues appear at three-loop level only for amplitudes with

n ≥ 10. This is also the maximal loop-level for NMHV leading singularities: as shown in

the same reference, there are no leading singularities at four-loops and higher.

Assuming the Grassmannian conjecture to be true, it is clear that residues for any

NMHV amplitude should be classified by whether they appear at the one-loop, two-loop

or three-loop level first. Although they can contribute to higher-loop leading singularities,

we will refer to those residues in a slightly inaccurate manner as one-loop, two-loop and

three-loop residues respectively.

As will be proven below, residues can be classified by using invariant labels. Given any

sequence of cyclically ordered numbers (i1, . . . , ip) where il ∈ {1, . . . , n} and p ≤ n, the

invariant label is defined as the set

{(i2 − i1)modn, (i2 − i1)modn, . . . , (i1 − ip)modn} . (6.2)

As is obvious from the above definition, the name invariant label refers to its invariance

under cyclic shifts of (i1, . . . , ip). Since any residue is a sequence of n − 5 numbers from

1, . . . , n, one can determine an invariant label for each of them.
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Starting from the fact that any invariant label for a residue is a decomposition of n into

n− 5 numbers, it is easy to prove that, given a sufficiently large n, there are exactly seven

distinct invariant labels, which are listed in table 5.

type invariant label

1 {1, ..., 1, 6}
2 {1, ..., 1, 2, 5}
3 {1, ..., 1, 3, 4}
4 {1, ..., 1, 2, 3, 3}
5 {1, ..., 1, 2, 2, 4}
6 {1, ..., 1, 2, 2, 2, 3}
7 {1, ..., 1, 2, 2, 2, 2, 2}.

Table 5: Types of invariant labels for the NMHV sector

In addition to the classification of the loop level, the invariant label contains further

information: certain types of box coefficients correspond to particular types of one-loop

residues, as will be discussed below.

The mapping of box coefficients to residues is given in terms of the complementary

labeling defined in eq. (3.116) in subsection 3.3.5. Therefore in a first step classes of

complementary labels corresponding to types of residues in table 5 above are identified.

As expected from the definition of the invariant label, the criterion for classification is the

number of successive subsequences. Again there are exactly seven types, corresponding to

seven possible invariant labels in table 5:

Comparing the above table with the results for one-loop leading singularities eqs. (3.118)

and (3.119), it is straightforward to see that types 1 to 4 correspond to one-loop residues.

The invariant labels of types 1 to 4 contain exactly one even number.

Alternatively, one could have considered the BCFW and P(BCFW) forms of NMHV tree

amplitudes given by eqs. (3.113) and (3.114). Using the fact that their residues are odd/even

alternating sequences, it follows immediately that their invariant labels can contain one even

number only. Since those representations of the tree amplitudes are built from one-loop

residues, one again arrives at the conclusion that they belong to types 1 to 4.

Having identified all one-loop residues, the remaining types 5, 6 and 7 must correspond

to higher-loop residues. In order to find the classification, the results from references

[87, 150] stated earlier in this subsection are helpful: the fact that all leading singularities for

n ≤ 7 are combinations of one-loop residues nicely agrees with the lack of decompositions

of types 5, 6 or 7 at n ≤ 7 as shown in table 7.

In addition, since types 5 and 6 can appear for n = 8, 9 but the last type only appears

for n ≥ 10, one can fit this fact to the results of [150]: types 5 and 6 seem to correspond to

two-loop residues while three-loop residues can be assigned to type 7.

It is remarkable to see that no further types appear as the number of particles increases,

which agrees with the claim that all NMHV leading singularities are combinations of these
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type complementary sequence length of succ. subseq.

1 {i, i+ 1, i + 2, i + 3, i+ 4} 5

2
{i, i+ 1, i + 2, i + 3, j>i+4}
{j, i>j+1, i+ 1, i+ 2, i+ 3}

4

3
{i, i+ 1, i + 2, j>i+3, j + 1}
{j, j + 1, i>j+2, i+ 1, i + 2}

3 and 2

4

{i, i+ 1, j>i+2, j + 1, k>j+2}
{k, i>k+1, i+ 1, j>i+2, j + 1}
{i, i+ 1, k>i+2, j>k+1, j + 1}

2 and 2

5

{i, i+ 1, i + 2, j>i+3, k>j+1}
{j, k>j+1, i>k+1, i+ 1, i + 2}
{j, i>j+1, i+ 1, i+ 2, k>i+3}

3

6
{i, i+ 1, j>i+2, k>j+1, l>k+1}
{j, k>j+1, l>k+1, i>l+1, i+ 1}

2

7 {i, j>i+1, k>j+1, l>k+1,m>l+1} 0

Table 6: Classes of complementary labels

three types of residues [150].

Examining the first four types more carefully, one can find a subclassification of one-

loop residues. By comparing them with results in subsection 3.3.5, one finds that 3-mass

leading singularities can receive contributions from type 2 and 4 residues while residues

for 2-mass hard leading singularities are of type 1 and 3. For 2-mass easy coefficients, the

corresponding residues are of type 2, 3 and 4, and 1-mass leading singularities can have all

four possible cases for one-loop residues. In summary, a complete classification of residues

based on invariant labels is presented in table 8.

n invariant label

6 {6}
7 {1, 6},{2, 5},{3, 4}
8 {1, 1, 6},{1, 2, 5},{1, 3, 4},{2, 3, 3},{2, 2, 4}
9 {1, 1, 1, 6},{1, 1, 2, 5},{1, 1, 3, 4},{1, 2, 2, 3},{1, 2, 2, 4},{2, 2, 2, 3}
10 {1, 1, 1, 1, 6},{1, 1, 1, 2, 5},{1, 1, 1, 3, 4},{1, 1, 2, 2, 3},{1, 1, 2, 2, 4},{1, 2, 2, 2, 3},{2, 2, 2, 2, 2}
...

...

n
{1, ..., 1, 6},{1, ..., 1, 2, 5},{1, ..., 1, 3, 4},{1, ..., 1, 2, 3, 3},
{1, ..., 1, 2, 2, 4},{1, ..., 1, 2, 2, 2, 3},{1, ..., 1, 2, 2, 2, 2, 2} .

Table 7: Invariant label of partitions of {1, . . . , n} into n− 5 parts



6.2. Mapping GRTs to dual conformal constraints and IR equations 97

3m 2mh 2me 1m 2-loop 3-loop

b
b
b

b
b
b

b
b
b

b
b
b

b
b
b

b
b
b

b
b
b

b
b
b

types 2 or 4
(1 + 3) or

(3 + 3)

(1 + 2 +3)

or (1 + 1)
1 to 4 5 and 6 7

.

Table 8: Classification of residues

6.2 Mapping generalized residue theorems to dual conformal constraints

and IR equations

After having classified NMHV residues in the previous subsection, here all one-loop dual

conformal constraints defined in subsection 2.6.5 are expressed in terms of residues. In the

following, the source terms of the GRTs necessary to show (cf. eq. (2.113))

Ei,k = 0 (6.3)

for i = 1, ..., n and k = i + 2, ..., i + n − 3 shall be investigated. Starting with E(1, 4) = 0

for an amplitude with n = 9 legs as an example, the corresponding expression in terms of

residues reads

({1, 2, 4, 9} + {1, 2, 6, 9} + {1, 2, 8, 9} + {1, 3, 4, 9}
+ {1, 3, 6, 9} + {1, 3, 8, 9} − {1, 4, 5, 9} − {1, 4, 7, 9}
+{1, 5, 6, 9} + {1, 5, 8, 9} − {1, 6, 7, 9} + {1, 7, 8, 9}) = 0 . (6.4)

The above equality can be obtained by adding GRTs with the following source terms:

−(1, 4, 9) − (1, 6, 8) − (1, 8, 9) = 0 . (6.5)

Here and below a global minus sign in the equation will not be noted for vanishing results.

For finding a general rule describing which GRTs have to be added, it is sufficient to

restrict the attention to the case i = 1, because all other conformal constraints can be

obtained by cyclical shifts. In table 9, a couple of lower-point examples are listed. Based

on these examples and further tests, the general rule for obtaining the source terms in the

fourth column for a certain m and n legs can be conjectured as

0 =
∑

V

(1, 2, .., (m − 2), v(1), . . . , v(n−m−5)︸ ︷︷ ︸
V

, n) , (6.6)

where V is a strictly increasing succession of n−m− 5 numbers

v ∈ {m+ 1, . . . , n− 1} , (6.7)

which has to be chosen such that the whole source term is strictly alternating between odd

and even. The summation is over all possible Vs.
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part. E(i, k) m=k−i source terms

7 E(1, 3) 2 0 = (7)

8 E(1, 3) 2 0 = (3, 8) + (5, 8) + (7, 8)

E(1, 4) 3 0 = (1, 8)

E(1, 5) 4 trivial vanishing

E(1, 6) 5 trivial vanishing

9 E(1, 3) 2 0 = (3, 4, 9) + (3, 6, 9) + (3, 8, 9) + (5, 6, 9) + (5, 8, 9) + (7, 8, 9)

E(1, 4) 3 0 = (1, 4, 9) + (1, 6, 9) + (1, 8, 9)

E(1, 5) 4 0 = (1, 2, 9)

E(1, 6) 5 trivial vanishing

E(1, 7) 6 trivial vanishing

10 E(1, 3) 2 0 = (3, 4, 5, 10) + (3, 4, 7, 10) + (3, 4, 9, 10) + (3, 6, 7, 10) + (3, 6, 9, 10)

+(3, 8, 9, 10) + (5, 6, 7, 10) + (5, 6, 9, 10) + (5, 8, 9, 10) + (7, 8, 9, 10)

E(1, 4) 3 0 = (1, 4, 5, 10) + (1, 4, 7, 10) + (1, 4, 9, 10)

+(1, 6, 7, 10) + (1, 6, 9, 10) + (1, 7, 9, 10)

E(1, 5) 4 0 = (1, 2, 5, 10) + (1, 2, 7, 10) + (1, 2, 9, 10)

E(1, 6) 5 0 = (1, 2, 3, 10)

E(1, 7) 6 trivial vanishing

E(1, 8) 7 trivial vanishing
...

...
...

...

Table 9: Source terms for GRTs related to the vanishing of dual conformal constraints

For example, in order to obtain the GRTs for the vanishing of E(1, 5) in a scenario with

n = 11, one would start with (1, 2,V, 11). According to eq. (6.7) the numbers v ∈ V have

to be in the range {5, . . . , 10}. Thus all valid choices for V in this scenario are

(5, 6), (5, 8), (5, 10), (7, 8), (7, 10), (9, 10) , (6.8)

which finally leads to

E(1, 5) = (1, 2, 5, 6, 11) + (1, 2, 5, 8, 11) + (1, 2, 5, 10, 11)

+ (1, 2, 7, 8, 11) + (1, 2, 7, 10, 11) + (1, 2, 9, 10, 11) = 0 . (6.9)

Considering the other type of dual conformal constraint (cf. eq. (2.114)),

Ei,i−2 = −Ei−1,i = −2Atree
n , (6.10)

one first needs to pick a form of the tree amplitude. For the investigation here it will be

useful to choose

2Atree = Atree
BCFW +Atree

P(BCFW) (6.11)

where the two representations of the tree-level amplitudes have been defined in eqs. (3.113)

and (3.114). The BCFW and the P(BCFW) form of the tree amplitude are cyclically

invariant, but in order to show this, it is necessary to employ GRTs. For example, the
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equality of the seven-point BCFW form of the tree amplitude to its shifted version,

{2, 3} + {2, 5} + {2, 7} + {4, 5} + {4, 7} + {6, 7}
= {3, 4} + {3, 6} + {3, 1} + {5, 6} + {5, 1} + {7, 1} , (6.12)

is not obvious. So one expects that only for one particular choice of i in eq. (6.10) is the

expression eq. (6.11) obtained. Translating again box coefficients into residues confirms this

expectation. Only for i = 2 is the chosen form of the tree amplitude reproduced,

E(2, n) = −E(1, 2) = −(Atree
BCFW +Atree

P(BCFW)) . (6.13)

Having mapped all dual conformal constraints to sums of GRTs, it is interesting to

make contact to the IR equations. As discussed in subsection 2.6.5, all IR equations are

related to conformal equations via eqs. (2.116) and (2.117). It would be straightforward

to just add and subtract the appropriate source terms corresponding to the different terms

E(i, k). However, because of cancellations between different GRTs this does not result in

the simplest possible expression. Therefore, the above analysis performed for the dual

conformal constraints will be repeated for the IR equations below40.

As an illustration for IR equations (see subsection 2.6.4 for an introduction)

A1-loop
n

∣∣∣
IR

= − 1

ǫ2

n∑

i=1

(−[[i]]2)
−ǫAtree

n , (6.14)

the kinematic invariant [[1]]2 for the 7-point NMHV scenario is considered. By either scan-

ning for the corresponding IR divergences or employing eq. (2.116) one obtains

C1m
1234 + C1m

7123 + 1
2C

2mh
1235 − 1

2C
2mh
6713 + 1

2C
2mh
1236 − 1

2C
2mh
3451 − C2me

7134 − 1
2C

3m
3461 − 1

2C
3m
7135 (6.15)

for the left hand side of eq. (6.14). Translating into residues yields

({7, 1} + {5, 1} + {3, 1} + {4, 5}) + ({6, 7} + {4, 7} + {2, 7} + {3, 4})
+1

2({2, 5} + {5, 6}) − 1
2 ({7, 3} + {3, 4}) + 1

2({2, 3} + {3, 6}) − 1
2({4, 5} + {5, 1})

−({7, 1}) − 1
2({3, 1}) − 1

2({7, 5}) (6.16)

which, by use of GRTs, equals

{2, 3} + {2, 5} + {2, 7} + {4, 5} + {4, 7} + {6, 7} . (6.17)

This is the expected BCFW form of the 7-point NMHV tree amplitude.

As a second example, consider the invariant [[1]]4 for 9 particles. The corresponding IR

equation reads

−1
2C

2mh
1235 − 1

2C
2mh
5671 + C2mh

9125 +C2mh
4561 − 1

2C
2mh
8915 − 1

2C
2mh
3451 − C2me

1245 − 1
2C

3m
5681 + 1

2C
3m
9135

+1
2C

3m
4571 +C3m

1256 − C3m
5691 + C3m

9145 + 1
2C

3m
1257 + 1

2C
3m
4581 + 1

2C
3m
1258 + 1

2C
3m
5613 − 1

2C
3m
9157 = 0 .

(6.18)

40Note that the considerations are again limited to the starting point i = 1, because one can always obtain

results for other i’s by cyclic shifts.
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Again translating into residues and sorting out the prefactors (but not using any GRT)

leads to the following result:

1
2 (−{1, 2, 3, 5} − {1, 2, 3, 7} − {1, 2, 4, 5} − {1, 2, 4, 7}

+ {1, 2, 5, 6} + {1, 2, 5, 8} + {1, 2, 5, 9} − {1, 2, 6, 7}
+ {1, 2, 7, 8} + {1, 2, 7, 9} − {1, 5, 6, 7} − {2, 5, 6, 7}
−{3, 5, 6, 7} − {4, 5, 6, 7} + {5, 6, 7, 8} + {5, 6, 7, 9}) = 0 . (6.19)

It is not difficult to see that this equation arises by adding three GRTs with the following

source terms,

−(1, 2, 5) − (1, 2, 7) − (5, 6, 7) = 0 , (6.20)

where again the global minus sign will be neglected in the examples following below.

After having shown the correspondence in the above examples, the general analysis of

GRTs for IR equations shall be performed. For m = 2, the linear combination of residues

should coincide with the expression for the tree amplitude. From eqns. (6.6), (6.13) and

(2.116), it is straightforward to see which GRTs lead to the parity-invariant form of the

tree amplitude eq. (6.11). With other choices of GRTs, one can also generate BCFW,

P(BCFW) (eqs. (3.113) and (3.114)) or numerous other forms of the tree amplitude in

terms of residues.

In case of m > 2, there is no infrared divergence on the right hand side of eq. (6.14).

Therefore, the sum is expected to vanish by use of certain combinations of GRTs. Several

examples are listed in table 10. Inspecting the table 10, one initial observation can be made:

any one-loop IR equation for an n-point amplitude can be represented as the sum of n− 6

basic GRTs, each of which is a sum of 6 residues. However, some residues will cancel, thus

the final number of terms is smaller than 6 · (n− 6).

Furthermore, based on the examples in table 10 and further tests up to n = 20, the

general rule for m = 3 IR equations is found to be

[[1]]3 :
∑

V

(1, v1, . . . , vn−7︸ ︷︷ ︸
V

) = 0 , (6.21)

where V is a strictly increasing succession of n− 7 numbers,

vi ∈ {4, . . . , n− 2} (6.22)

and again only strictly odd/even alternating source terms are allowed.

For m > 3, another kind of source terms appears. While the type already encountered

for m = 3 starts from the left with (1, . . .), a second type has the form (. . . , n− 2) starting

from the right. Again by testing examples up to n = 20, for 4 ≤ m ≤ ⌊n/2⌋, one finds the

following general rule,

[[1]]m :
∑

V

(1, 2, . . . , (m− 2) , v1, . . . , vn−m−4︸ ︷︷ ︸
V

)

+
∑

W

(w1, . . . , wm−4︸ ︷︷ ︸
W

, (m+ 1), . . . , (n− 2)) = 0 , (6.23)
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particles kin. inv source terms

7 [[1]]3 0 = (1)

8 [[1]]3 0 = (1, 4) + (1, 6)

[[1]]4 0 = (1, 2) + (5, 6)

9 [[1]]3 0 = (1, 4, 5) + (1, 4, 7) + (1, 6, 7)

[[1]]4 0 = (1, 2, 5) + (1, 2, 7) + (5, 6, 7)

10 [[1]]3 0 = (1, 4, 5, 6) + (1, 4, 5, 8) + (1, 4, 7, 8) + (1, 6, 7, 8)

[[1]]4 0 = (1, 2, 5, 6) + (1, 2, 5, 8) + (1, 2, 7, 8) + (5, 6, 7, 8)

[[1]]5 0 = (1, 2, 3, 6) + (1, 2, 3, 8) + (1, 6, 7, 8) + (3, 6, 7, 8)
...

...
...

12 [[1]]3 0 = (1, 4, 5, 6, 7, 8) + (1, 4, 5, 6, 7, 10) + (1, 4, 5, 6, 9, 10)

+(1, 4, 5, 8, 9, 10)+ (1, 4, 7, 8, 9, 10) + (1, 6, 7, 8, 9, 10)

[[1]]4 0 = (1, 2, 5, 6, 7, 8) + (1, 2, 5, 6, 7, 10) + (1, 2, 5, 6, 9, 10)

+(1, 2, 5, 8, 9, 10)+ (1, 2, 7, 8, 9, 10) + (5, 6, 7, 8, 9, 10)

[[1]]5 0 = (1, 2, 3, 6, 7, 8) + (1, 2, 3, 6, 7, 10) + (1, 2, 3, 6, 9, 10)

+(1, 2, 3, 8, 9, 10)+ (1, 6, 7, 8, 9, 10) + (3, 6, 7, 8, 9, 10)

[[1]]6 0 = (1, 2, 3, 4, 7, 8) + (1, 2, 3, 4, 7, 10) + (1, 2, 3, 4, 9, 10)

+(1, 2, 7, 8, 9, 10)+ (1, 4, 7, 8, 9, 10) + (3, 4, 7, 8, 9, 10)

Table 10: Source terms for GRTs related to the vanishing of the IR equation obtained from a

particular kinematic invariant

where V and W are again strictly increasing successions of numbers satisfying

m+ 1 ≤ vi ≤ n− 2 and 1 ≤ wi ≤ m− 2 (6.24)

and chosen to respect the odd/even alternating structure of source terms. The first term

in eq. (6.23) is a generalization of eq. (6.21).

The labels of source terms in the general formula eq. (6.23) are strictly odd/even al-

ternating, which nicely connects to the classification of residues: starting from a strictly

alternating source term, the residues in the resulting GRT will be either strictly alternating

themselves or have an “all-but-one” odd/even alternating structure such as eoeoo. Trans-

lating this into the language of invariant labels and comparing with table 5 singles out

exactly types 1 to 4, as expected.

One of the most important implications of one-loop IR equations, which is completely

obscured in the BCFW formalism, are the so-called “remarkable identities”, which relate the

BCFW representation of the tree amplitude eq. (3.113) with the P(BCFW) form eq. (3.114)

ABCFW = AP(BCFW) . (6.25)

Being highly nontrivial identities in the BCFW approach, they have an astonishingly simple

form in the language of residues.

While it was already shown in [87] that identities (cf. eq. (3.115))

E ⋆ O ⋆ E ⋆ · · · = (−1)(n−5)O ⋆ E ⋆ O ⋆ · · · (6.26)
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are implied by GRTs, one can as well derive them directly from combinations of GRTs.

The statement is simple: adding all GRTs corresponding to all source terms of the form

oeoe... for a particular number of legs produces the remarkable identity

ABCFW = AP(BCFW) : O ⋆ E ⋆ O · · ·︸ ︷︷ ︸
n−6 factors

= 0, (6.27)

where O, E and the star product have been defined in eq. (3.111) and eq. (3.112) respec-

tively.

For example, adding GRTs with source terms

(1, 2), (1, 4), (1, 6), (1, 8), (3, 4), (3, 6), (3, 8), (5, 6), (5, 8) and (7, 8)

produces the identity for n = 8:

{2, 3, 4} + {2, 3, 6} + {2, 3, 8} + {2, 5, 6} + {2, 5, 8}
+ {2, 7, 8} + {4, 5, 6} + {4, 5, 8} + {4, 7, 8} + {6, 7, 8}

= −({1, 2, 3} + {1, 2, 5} + {1, 2, 7} + {1, 4, 5} + {1, 4, 7}
+ {1, 6, 7} + {3, 4, 5} + {3, 4, 7} + {3, 6, 7} + {5, 6, 7}) (6.28)

As expected by parity invariance, one obtains the same result by adding GRTs corre-

sponding to all source terms of the form eoeo... .

6.3 Discussion

In this section it was investigated which global residue theorems in the Grassmannian

formulation of N=4 SYM theory imply the recently derived one-loop dual conformal con-

straints and the well-known one-loop IR equations in the NMHV sector. For both sets of

equations the source terms for the corresponding GRTs can be obtained from the general

rules eqs. (6.6) and (6.23). In addition, the remarkable identities relating the BCFW and

the P(BCFW) form of the tree amplitude emerge from adding all GRTs with an odd/even

alternating pattern of source terms eq. (6.27).

According to the classification of NMHV residues performed in subsection 6.1, all one-

loop residues are of odd/even alternating or “all-but-one” odd/even alternating structure.

This nicely fits to the general rules: all GRTs involved have source terms of strictly odd/even

alternating structure, which relate exactly these types of residues.

Since there exist further GRTs beyond the ones employed in the mappings, these are

presumably related to higher-loop dual conformal constraints or IR equations in the NMHV

sector. From the classification it is obvious, which residues contribute to higher-loop leading

singularities. However, without a general formalism to single out an integral basis for

two loops and beyond, the identification of higher-loop dual conformal constraints or IR

equations can not be performed.

Furthermore, although one-loop dual conformal constraints (and thus IR equations)

should be related to GRTs beyond the NMHV sector, a general map has not been found
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for these amplitudes so far. In [151], general contours for N2MHV tree amplitudes have

been derived using ideas from localization in Grassmannian manifolds. It would be very

interesting to generalize this analysis to the leading singularities of loop amplitudes beyond

the NMHV sector. Once this is achieved, it should be possible to identify the GRT origin

of dual conformal constraints for N2MHV and beyond.
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7 Conclusions and outlook

Although maximally supersymmetric field theories have been known for more than 30 years,

their symmetries and properties are still subject of numerous investigations, discussions and

speculations. As discussed in this thesis, many new results have been found for N=4 SYM

theory, but comparable achievements have not been obtained to the same extent for N=8

supergravity. In this thesis, different approaches to overcoming this deficiency of N=8

supergravity have been investigated.

In a first part, the suggestion for a twistor description for N=8 supergravity was shown

to be inconsistent in section 4. Even more, the results of subsection 4.4 question the

existence of a twistor description for N=8 supergravity in general: since twistor space is

intimately tied to the concept of chirality, it does not seem to be the correct framework

to describe N=8 supergravity in its present form. Although alternative suggestions for a

twistor description are known, it seems more likely that gravity is incorporated into twistor

space along the lines of the nonlinear graviton approach proposed by Penrose. The concept

of a metric deformation in usual spacetime translating into a marginal deformation of the

complex structure on twistor space seems to be a natural and beautiful concept. In addition,

it is necessary to note that twistor string theory in the formulation of Berkovits and Witten

is an incomplete theory. It is in general not possible to limit the attention exclusively to the

open sector of a string theory. However, the closed sector of twistor string theory has not

been explored so far. If existent at all, a possible twistor description of N=8 supergravity

could hide in there, but more likely a completely new geometrical concept will have to

replace twistor space.

In a second part, usual (non-twistor) string theory has been employed to investigate

possible symmetry reasons for the vanishing of the prefactor of a possible R4 counterterm

in N=8 supergravity in section 5. While the results indeed suggest that the hidden E7(7)

symmetry constrains the appearance of the R4 counterterm, the conditions investigated

need further study in order to establish their sufficiency. In particular, since the calculations

utilize scalars, which on the one hand side parameterize the coset of N=8 supergravity and

on the other hand are related to the dilaton from string theory, it is not clear in which

manner this influences the result. While for some compactifications certain constraints

on the prefactors in front of possible counterterms are known, this is not the case for the

compactification of supergravity to four dimensions. With such a result at hand, it would

be possible to draw a reliable conclusion.

Although the third part is concerned with the investigation of N=4 SYM theory ex-

clusively, it will be of use in further work on N=8 supergravity: the IR structure is one of

the first testing grounds for a possible prospective dual formulation of N=8 supergravity.

In section 6, one-loop dual conformal constraints and IR equations in N=4 SYM theory

have been explicitly mapped to generalized residue theorems in the novel Grassmannian

formulation of N=4 SYM. While this result was expected, the residue theorems seem to

contain a lot more information: not all available generalized residue theorems are used in
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the mapping. Furthermore, the classification singles out certain residues as contributing

to two-loop and three-loop leading singularities. Although this notion has to be sharply

defined in the future, the infrared information about those quantities is readily available.

What are the next steps to further investigate the structure of N=8 supergravity? The

main reason for an unsatisfactory understanding of the simplicity of the amplitudes, the

miraculous cancellations and the finiteness issue in N=8 supergravity is the current local

spacetime formulation. Since this description does not account for all symmetries of the

theory, an alternative, probably nonlocal, description for N=8 supergravity incorporating

all known and possibly new symmetries needs to be found.

Considering the current state of knowledge, there seem to be two possibilities to achieve

this:

• A number of steps towards another formulation have already been made: the de-

scription in light-cone superspace seems to be particularly suitable for the hidden E7

symmetry [131, 130, 132]. Lightcone coordinates have also proven useful to reveal

the structural similarity between the Lagrangian densities of N=8 and N=4 theo-

ries [152]. In another recent paper [133], an E7 manifest formulation of the theory has

been found. If the hidden E7 is the missing symmetry to be incorporated, it will be

promising to combine these approaches. However, while those formulations are very

powerful for discussing particular aspects such as the finiteness of N=8 supergravity,

they tend to obscure the analytic behavior of amplitudes and symmetries which are

capable to determine the theory completely.

• Due to the close relationship between N=4 and N=8 one hopes to find a description

for N=8 supergravity similar to the Grassmannian formulation for N=4 SYM. With

such a description, it would be an amazing result to completely determine the theory

by its symmetries and the analytical behavior of its amplitudes, as is suspected for

N=4 SYM theory.

However, in order to find such a formulation, one has to make explicit the symmetries

to start with. Given the recent findings in N=4 SYM theory, it is not clear whether

the known E7(7)/SU(8) symmetries of N=8 supergravity are exhaustive. Therefore,

one will have to investigate the symmetries of N=8 supergravity more thoroughly

in a first step. Starting from symmetries in N=4 SYM theory, this amounts to

employing the KLT relations in order to investigate the echos of the newly discovered

Yangian symmetries in the amplitudes of N=8 supergravity. In a second step, a novel

formulation for N=8 supergravity needs to be found. The sought-after description is

required to:

– manifestly incorporate all symmetries of N=8 , with the exception of Lorentz

symmetry which, however, is implicit and can be restored,

– be consistent with the KLT relations,
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– incorporate the analytic behavior of the amplitudes, i.e. reproduce the infrared

equations, like the Grassmannian formulation does in N=4 SYM.

It would be even more beautiful, if the formulation did not only satisfy the above

constraints, but if these requirements imply the novel formulation.
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